



Accreditations:



APEC TEL CA0001



1309



SL2-IN-E-1119R



Korea KCC-RRA  
CA0001

3000 Bristol Circle,  
Oakville, Ontario,  
Canada L6H 6G4

Tel.: (905) 829-1570  
Fax.: (905) 829-8050

Website: [www.ultratech-labs.com](http://www.ultratech-labs.com)  
Email: [vic@ultratech-labs.com](mailto:vic@ultratech-labs.com)

January 8, 2025

**Elprotronic Inc.**  
35 Austin Rumble Court  
King City, Ontario  
Canada, L7B 0B2

**Attn.:** **Mr. Gregory Czajkowski**

**Subject:** **Verification Testing under CISPR 32:2015, +A1:2019 / EN 55032:2015, +A11:2020 - Multimedia Equipment.**

**Product:** **Universal Gang Programmer**  
**Model No.:** **C-GANG**

Dear Mr. Czajkowski,

The product sample, as provided by you, has been tested and found to comply with **CISPR 32:2015, +A1:2019 / EN 55032:2015, +A11:2020, Class A - Multimedia Equipment.**

If the equipment is not Class B and meets only Class A, the following warning notice is required in the user manual. (For CLASS A ONLY)

***Warning: Operation of this equipment in a residential environment could cause radio interference.***

Enclosed you will find a copy of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu BSc.  
V.P., Engineering

Encl

# VERIFICATION CERTIFICATE



## NOT TRANSFERABLE

This Verification Certificate is hereby issued to the named GRANTEE and is VALID ONLY for the equipment identified hereon for use under the rules and regulations listed below:

**GRANTEE:** Elprotronic Inc.

Address: 35 Austin Rumble Court  
King City, Ontario  
Canada, L7B 0B2

Equipment Type: Multimedia Equipment

Product Name: Universal Gang Programmer  
Model No.: C-GANG

The above product was tested by  
UltraTech Engineering Labs Inc. and  
found to comply with:

CISPR 32:2015, +A1:2019 / EN 55032:2015, +A11:2020,  
Class A- Multimedia Equipment.

Date of Authorization: | January 8, 2025

- *Note(s): See attached report, UltraTech's File No.: 24ELP018\_CISPR32A, dated: January 8, 2025 for details and conditions of Verification Compliance.*

Approved by: Tri M. Luu BASc  
V.P. Engineering

## UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4

Tel.: (905) 829-1570 Fax. (905) 829-8050

Website: [www.ultratech-labs.com](http://www.ultratech-labs.com), Email: [vic@ultratech-labs.com](mailto:vic@ultratech-labs.com), Email: [tri@ultratech-labs.com](mailto:tri@ultratech-labs.com)



0685



APEC TEL  
CA0001



1309

Canada

CA 0001/2049



ANAB  
ACCREDITED  
ISO/IEC 17025  
TESTING LABORATORY



SL2-IN-E-1119R

Korea KCC-  
RRA

CA0001

# ENGINEERING TEST REPORT



## Universal Gang Programmer Model No.: C-GANG

**Applicant:** **Elprotronic Inc.**  
35 Austin Rumble Court  
King City, Ontario  
Canada, L7B 0B2

### *Tested in Accordance With*

**INTERNATIONAL ELECTROTECHNICAL COMMISSION**  
**CISPR 32:2015, +A1:2019 / EN55032:2015, +A11:2020**  
**Electromagnetic Compatibility of Multimedia Equipment –**  
**Emission Requirements**

**UltraTech's File No.: 24ELP018\_CISPR32A**

This Test report is Issued under the Authority of  
Tri M. Luu BASc  
Vice President of Engineering  
UltraTech Group of Labs

Date: January 8, 2025

Report Prepared by: Phuong Ho

Tested by: Kendrick Luu & Christian Luu

Issued Date: January 8, 2025

Test Date: November 12, 2024

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
- This report must not be used by the client to claim product endorsement by any agency of the US Government.
- This test report shall not be reproduced, except in full, without a written approval from UltraTech.

## UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4  
Tel.: (905) 829-1570 Fax. (905) 829-8050  
Website: [www.ultratech-labs.com](http://www.ultratech-labs.com), Email: [vic@ultratech-labs.com](mailto:vic@ultratech-labs.com), Email: [tri@ultratech-labs.com](mailto:tri@ultratech-labs.com)



Canada



**ANAB**  
ANSI National Accreditation Board  
ACCREDITED  
ISO/IEC 17025  
TESTING LABORATORY



**Korea KCC-RRA**

0685

APEC TEL  
CA0001

1309

CA 0001/2049

AT-1945

SL2-IN-E-1119R

CA0001

## TABLE OF CONTENTS

|                                                                                 |           |
|---------------------------------------------------------------------------------|-----------|
| <b>EXHIBIT 1. INTRODUCTION .....</b>                                            | <b>3</b>  |
| 1.1. SCOPE .....                                                                | 3         |
| 1.2. REVISION HISTORY .....                                                     | 3         |
| 1.3. RELATED SUBMITTAL(S)/GRANT(S).....                                         | 3         |
| 1.4. NORMATIVE REFERENCES.....                                                  | 3         |
| <b>EXHIBIT 2. PERFORMANCE ASSESSMENT .....</b>                                  | <b>4</b>  |
| 2.1. CLIENT INFORMATION .....                                                   | 4         |
| 2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION.....                                | 4         |
| 2.3. LIST OF ACCESSORIES OF THE EUT .....                                       | 4         |
| 2.4. LIST OF EUT'S PORTS .....                                                  | 4         |
| 2.5. ANCILLARY EQUIPMENT .....                                                  | 4         |
| <b>EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS.....</b> | <b>5</b>  |
| 3.1. CLIMATE TEST CONDITIONS.....                                               | 5         |
| 3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS.....            | 5         |
| 3.3. BLOCK DIAGRAM OF TEST SETUP .....                                          | 5         |
| 3.4. PHOTOGRAPHS OF TEST SETUP FOR AC CONDUCTED EMISSIONS.....                  | 6         |
| 3.5. PHOTOGRAPHS OF TEST SETUP FOR RADIATED EMISSION MEASUREMENTS .....         | 7         |
| <b>EXHIBIT 4. SUMMARY OF TEST RESULTS .....</b>                                 | <b>9</b>  |
| 4.1. LOCATION OF TESTS.....                                                     | 9         |
| 4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS.....                  | 9         |
| 4.3. MODIFICATIONS REQUIRED FOR COMPLIANCE.....                                 | 9         |
| 4.4. DEVIATION OF THE STANDARD TEST PROCEDURES .....                            | 9         |
| <b>EXHIBIT 5. MEASUREMENT DATA .....</b>                                        | <b>10</b> |
| 5.1. AC MAINS TERMINAL DISTURBANCE VOLTAGE .....                                | 10        |
| 5.1.1. <i>Limits</i> .....                                                      | 10        |
| 5.1.2. <i>Method of Measurements</i> .....                                      | 10        |
| 5.1.3. <i>Test Instruments</i> .....                                            | 10        |
| 5.1.4. <i>Test Results</i> .....                                                | 11        |
| 5.2. ELECTROMAGNETIC RADIATION DISTURBANCE FROM 30 MHZ TO 3 GHZ.....            | 13        |
| 5.2.1. <i>Limits</i> .....                                                      | 13        |
| 5.2.2. <i>Method of Measurements</i> .....                                      | 13        |
| 5.2.3. <i>Test Instruments</i> .....                                            | 13        |
| 5.2.4. <i>Test Results</i> .....                                                | 14        |
| <b>EXHIBIT 6. TEST INSTRUMENTS &amp; MEASUREMENT UNCERTAINTY.....</b>           | <b>15</b> |
| 6.1. MEASUREMENT UNCERTAINTY .....                                              | 15        |
| 6.2. TEST EQUIPMENT LIST .....                                                  | 15        |
| 6.2.1. <i>Line Conducted Emissions</i> .....                                    | 15        |
| 6.2.2. <i>Radiated Emissions</i> .....                                          | 15        |
| <b>EXHIBIT 7. LABELLING REQUIREMENTS.....</b>                                   | <b>16</b> |
| <b>UKCA MARKING .....</b>                                                       | <b>17</b> |
| <i>Placing the UKCA marking</i> .....                                           | 17        |

# EXHIBIT 1. INTRODUCTION

## 1.1. SCOPE

|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Reference:</b>                | CISPR 32:2015+A1:2019/ EN55032:2015+A11:2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Title</b>                     | Electromagnetic compatibility of multimedia equipment – Emission requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Purpose of Test:</b>          | To gain Verification Compliance with CISPR 32:2015+A1:2019/ EN55032:2015+A11:2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Test Procedures</b>           | Both conducted and Electromagnetic Radiation Disturbance measurements were conducted in accordance with the European Standards CISPR 32:2015+A1:2019/ EN55032:2015+A11:2020 - Electromagnetic compatibility of multimedia equipment – Emission requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Class A/B Classification:</b> | <p>The Class B requirements for equipment are intended to offer adequate protection to broadcast services within the residential environment.</p> <p>Equipment intended primarily for use in a residential environment shall meet the Class B limits. All other equipment shall comply with the Class A limits.</p> <p>Broadcast receiver equipment is class B equipment.</p> <p><b>NOTE Equipment meeting Class A requirements may not offer adequate protection to broadcast services within a residential environment and the following notice is required in user manual (<u>For class A equipment only</u>)</b></p> <p><b>Warning: Operation of this equipment in a residential environment could cause radio interference.</b></p> |

The CISPR standard defines the acceptable levels of Conducted Disturbance at Mains Ports and Radiated Disturbance emanated from electronic products. Countries are known to require CISPR compliance are *Australia, Austria, Belgium, Ireland, France, Italy, Spain, Germany, Netherlands, Portugal, Denmark, Luxembourg, Switzerland, Finland, Norway, Sweden, Iceland, Greenland, New Zealand, Japan, United Kingdom, The United States, Canada and etc* ....

## 1.2. REVISION HISTORY

| Document          | Issue Date      | Description       |
|-------------------|-----------------|-------------------|
| 24ELP018_CISPR32A | January 8, 2025 | Original document |
|                   |                 |                   |

## 1.3. RELATED SUBMITTAL(S)/GRANT(S)

None.

## 1.4. NORMATIVE REFERENCES

| Publication                                   | Year                                 | Title                                                                                                                                                                 |
|-----------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CISPR 32<br>+ COR1<br>+A1<br>EN 55032<br>+A11 | 2015<br>2016<br>2019<br>2015<br>2020 | Electromagnetic compatibility of multimedia equipment – Emission requirements                                                                                         |
| CISPR 16-1-1<br>+A1<br>+A2                    | 2010<br>2010<br>2014                 | Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring apparatus |
| CISPR 16-1-2<br>+A1:<br>+A2                   | 2003<br>2004<br>2006                 | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances                                                    |
| ANSI C63.4                                    | 2014                                 | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz   |

## ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4  
 Tel. #: 905-829-1570, Fax. #: 905-829-8050,

File #: 24ELP018\_CISPR32A  
 January 8, 2025

## EXHIBIT 2. PERFORMANCE ASSESSMENT

### 2.1. CLIENT INFORMATION

| APPLICANT/ MANUFACTURER: |                                                                 |
|--------------------------|-----------------------------------------------------------------|
| Name:                    | Elproto Inc.                                                    |
| Address:                 | 35 Austin Rumble Court<br>King City, Ontario<br>Canada, L7B 0B2 |

### 2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

|                                          |                              |
|------------------------------------------|------------------------------|
| Product Name                             | Universal Gang Programmer    |
| Model Name or Number                     | C-GANG                       |
| Firmware Version Identification Number : | BS063X01-1.04, CS063X01-1.06 |
| Serial Number:                           | SN: 630100523                |
| CPU Frequencies:                         | 12 MHz, 192 MHz, 480 MHz     |
| Type of Equipment                        | Multimedia Equipment         |
| Power input source:                      | 5VDC Host device             |
| Typical Equipment Usage:                 | Indoor                       |

### 2.3. LIST OF ACCESSORIES OF THE EUT

|   | Name, Make, Model of Component / Part | Short Description of Use |
|---|---------------------------------------|--------------------------|
| 1 | C-GANG                                | Gang Programmer for MCUs |

### 2.4. LIST OF EUT'S PORTS

| Port # | EUT's Port Description  | Number of Identical Ports | Connector/ Interface Type | Connected Cabling Length / Type | Cable Type   |
|--------|-------------------------|---------------------------|---------------------------|---------------------------------|--------------|
| 1      | USB-C                   | 1                         | USB-C                     | Not allow longer than 3m        | Shielded     |
| 2      | To Gang Splitter        | 1                         | 56 pins                   | Not allow longer than 3m        | Non-shielded |
| 3      | To single target device | 1                         | 10 pins                   | Not allow longer than 3m        | Non-shielded |

### 2.5. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

| Ancillary Equipment # 1                      |                  |
|----------------------------------------------|------------------|
| Equipment Make and Name:                     | Gang splitter    |
| Model Name or Number:                        | C-GANG-SP rev-0  |
| Connected to EUT's Port #: (See above table) | To Gang Splitter |

| Ancillary Equipment # 2                      |       |
|----------------------------------------------|-------|
| Equipment Make and Name:                     | PC    |
| Connected to EUT's Port #: (See above table) | USB-C |

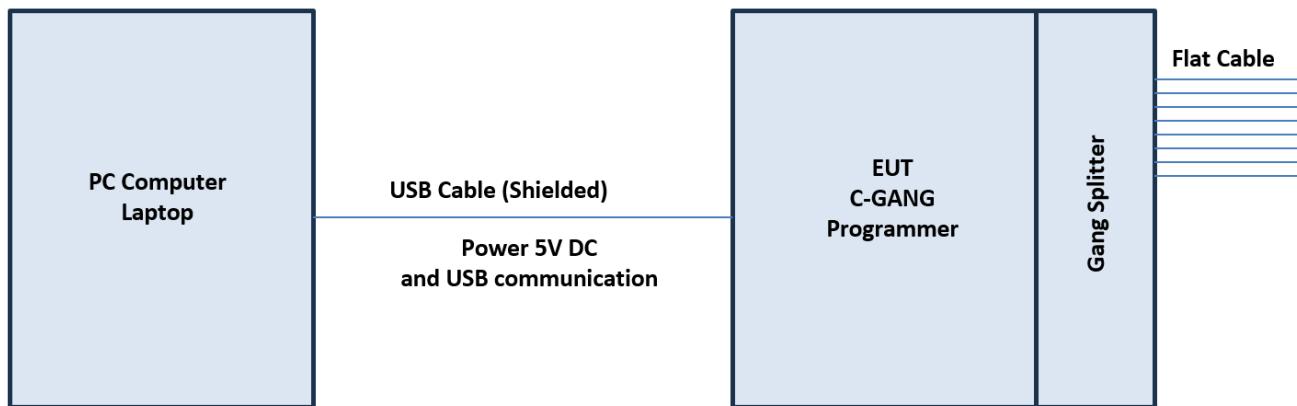
## EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

### 3.1. CLIMATE TEST CONDITIONS

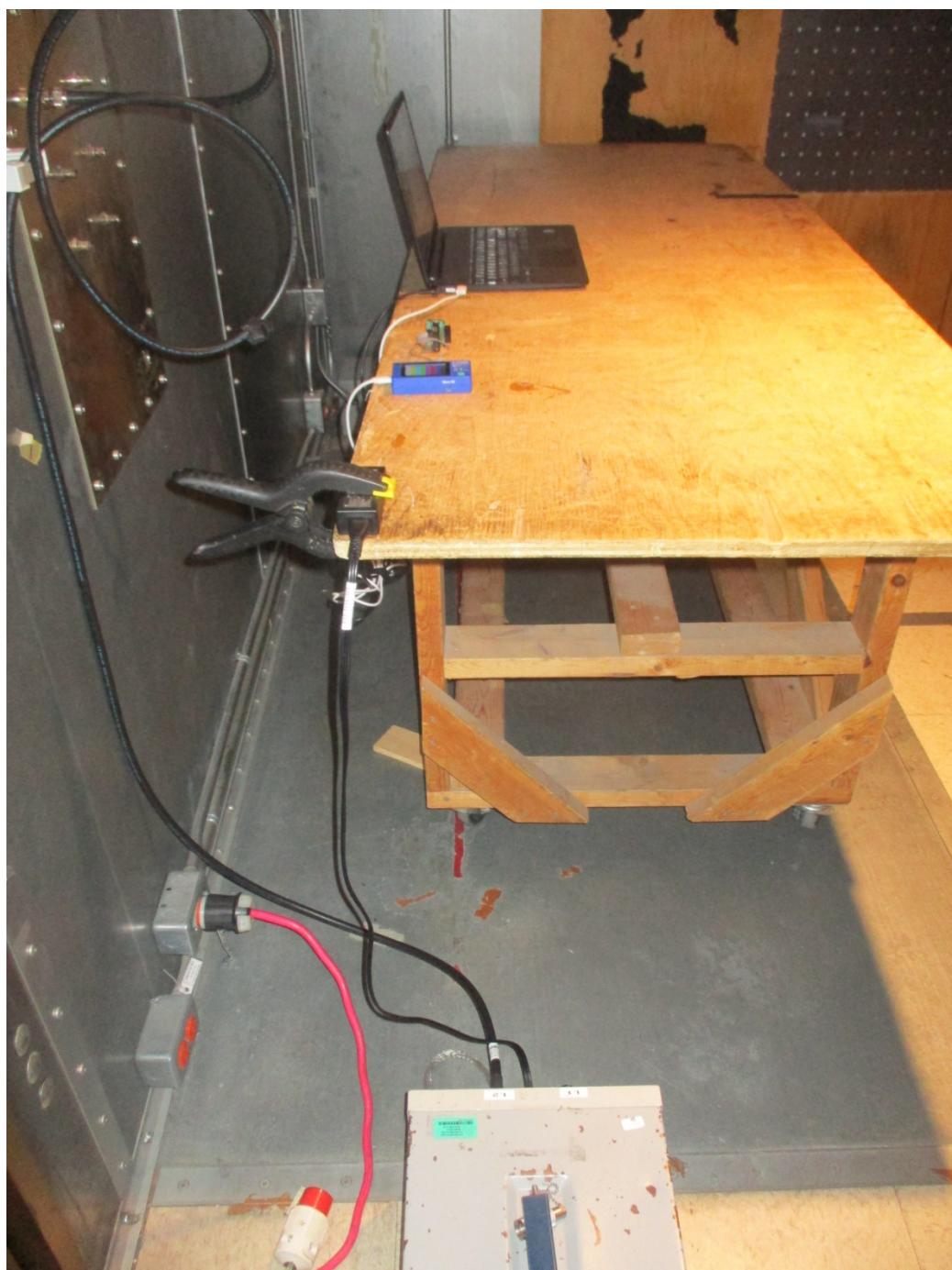
The climate conditions of the test environment are as follows:

|                     |           |
|---------------------|-----------|
| Temperature:        | 23.7°C    |
| Humidity:           | 30%       |
| Pressure:           | 100.9 kPa |
| Power input source: | 5 VDC     |

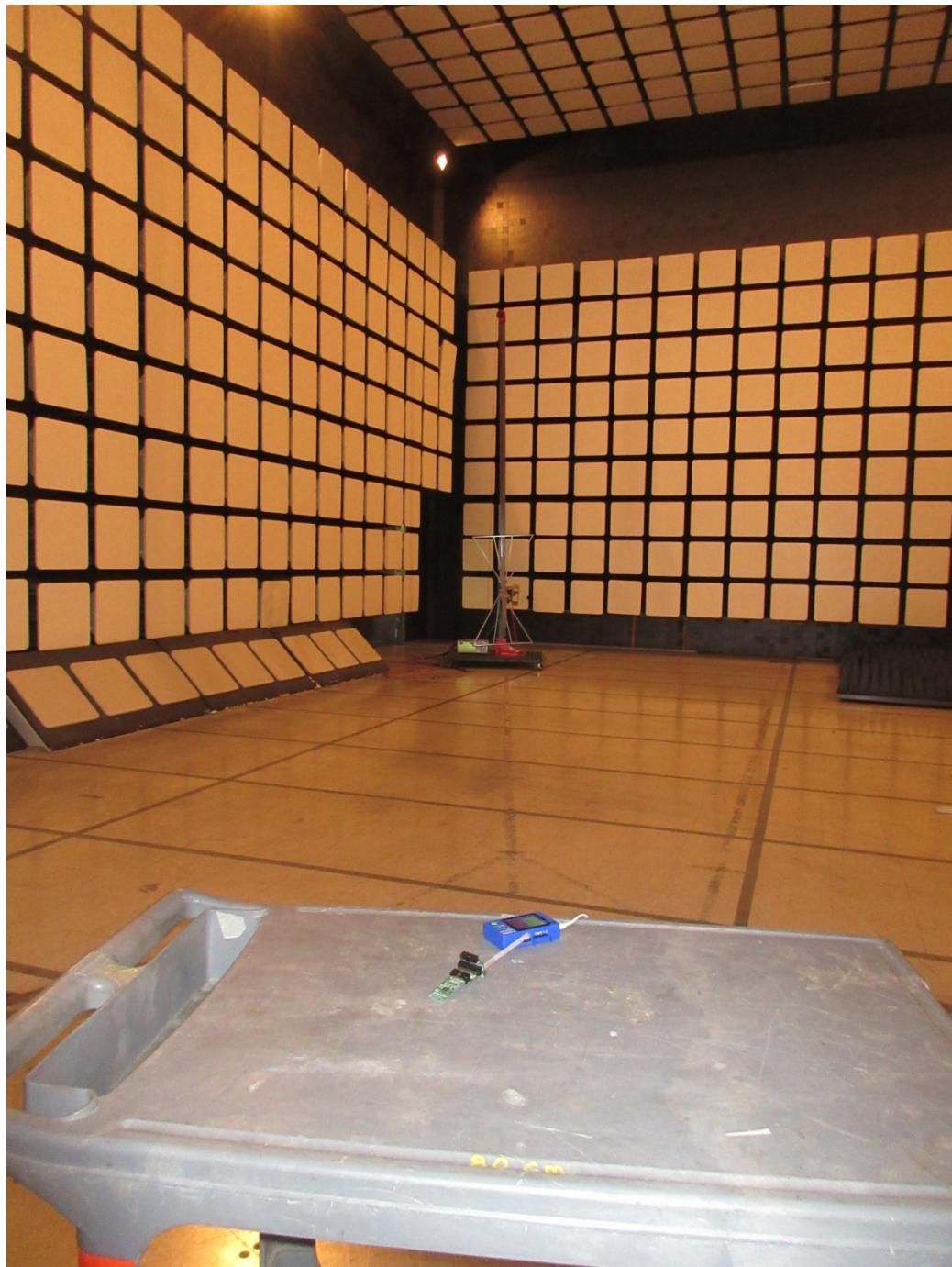
### 3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

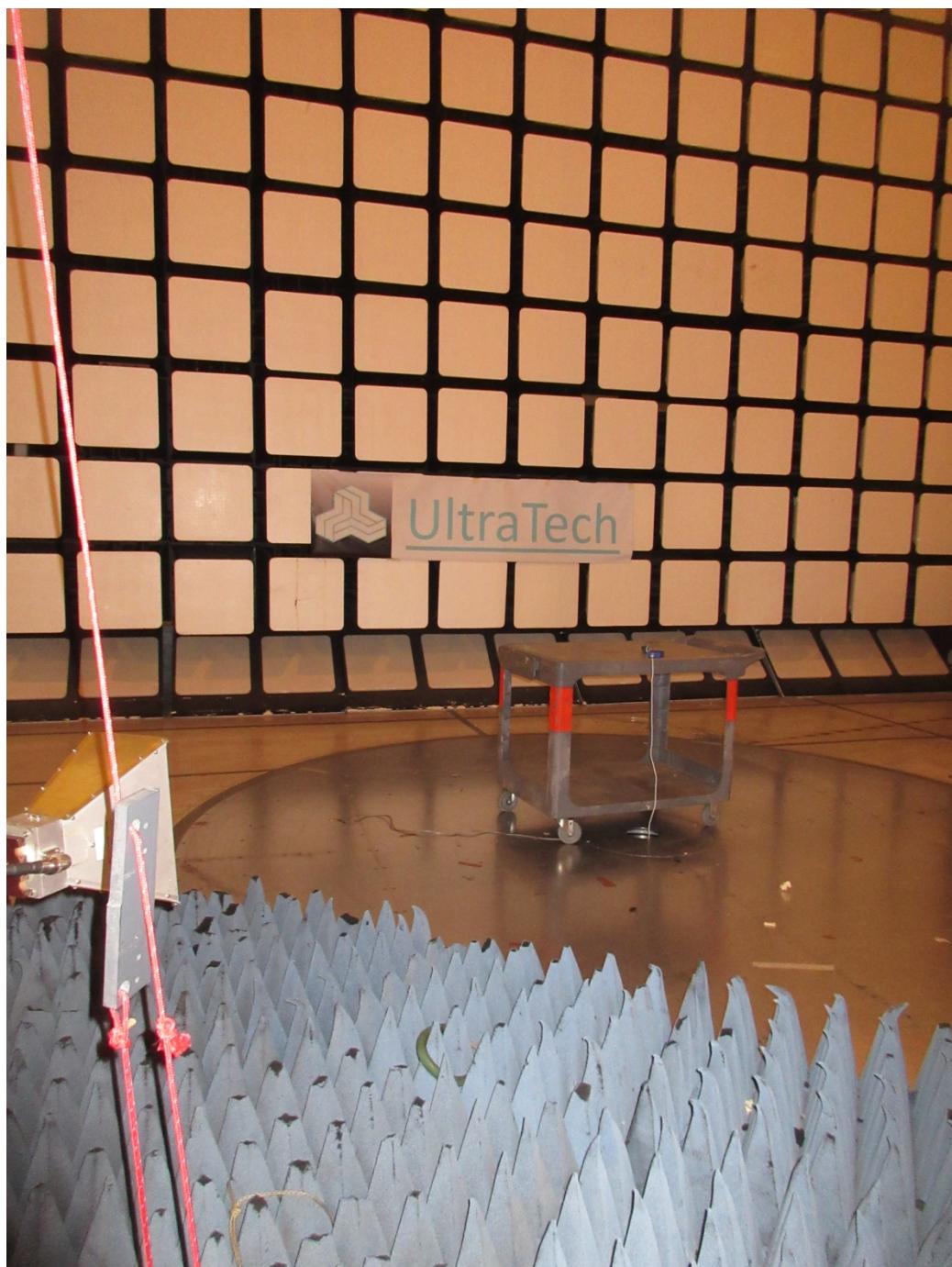

#### 1) Equipment Setup / operating instructions:

Connect programmer via USB cable to PC. Connect target to be programmed via C-GANG. Run software on PC.


#### 2) Description of normal operation during tests:

Connect programmer via USB cable to PC. Connect target to be programmed via C-GANG. Run software on PC.


### 3.3. BLOCK DIAGRAM OF TEST SETUP




### 3.4. PHOTOGRAPHS OF TEST SETUP FOR AC CONDUCTED EMISSIONS



### 3.5. PHOTOGRAPHS OF TEST SETUP FOR RADIATED EMISSION MEASUREMENTS





---

**ULTRATECH GROUP OF LABS**

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4  
Tel. #: 905-829-1570, Fax. #: 905-829-8050,

File #: 24ELP018\_CISPR32A  
January 8, 2025

## EXHIBIT 4. SUMMARY OF TEST RESULTS

### 4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the town of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with ANAB File No.: AT-1945.

### 4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

| Requirement – Test                                                                                           | Result/Margin                               | Verdict |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|
| Classification Class (A or B)                                                                                | CLASS A                                     | —       |
| Limits of mains terminal disturbance voltage 150 KHz to 30 MHz                                               | - 24.6 dB @ 0.152 MHz                       | PASS    |
| Limits of conducted common mode (asymmetric mode) disturbance 150 KHz to 30 MHz                              | N/A                                         | PASS    |
| Limits of conducted differential voltage ( RF modulator/ Receiver Tuner ports ) disturbance 30MHz to 2150MHz | No applicable ports                         | N/A     |
| Limits for Radiated disturbance from 30 MHz to 6GHz                                                          | - 8.3 dB @ 31.55 MHz                        | PASS    |
| Outdoor units of home satellite receiving systems– Limits for radiated disturbance between 1 GHz to 18 GHz   | Not Outdoor home satellite receiving system | N/A     |
| Outdoor units of home satellite receiving systems – Limits of conducted disturbance between 1 GHz to 18 GHz  | Not Outdoor home satellite receiving system | N/A     |
| N/A- Not Applicable                                                                                          |                                             |         |

### 4.3. MODIFICATIONS REQUIRED FOR COMPLIANCE

None.

### 4.4. DEVIATION OF THE STANDARD TEST PROCEDURES

None.

## EXHIBIT 5. MEASUREMENT DATA

### 5.1. AC MAINS TERMINAL DISTURBANCE VOLTAGE

#### 5.1.1. Limits

| Frequency (MHz) | CLASS A Limit dB ( $\mu$ V) |          |
|-----------------|-----------------------------|----------|
|                 | Quasi-Peak                  | Average  |
| 0.15 to 0.50    | 79                          | 66       |
| 0.50 to 30      | 73                          | 60       |
| Frequency (MHz) | CLASS B Limit dB ( $\mu$ V) |          |
|                 | Quasi-Peak                  | Average  |
|                 | 66 to 56                    | 56 to 46 |
| 0.50 to 5       | 56                          | 46       |
| 5 to 30         | 60                          | 50       |

#### 5.1.2. Method of Measurements

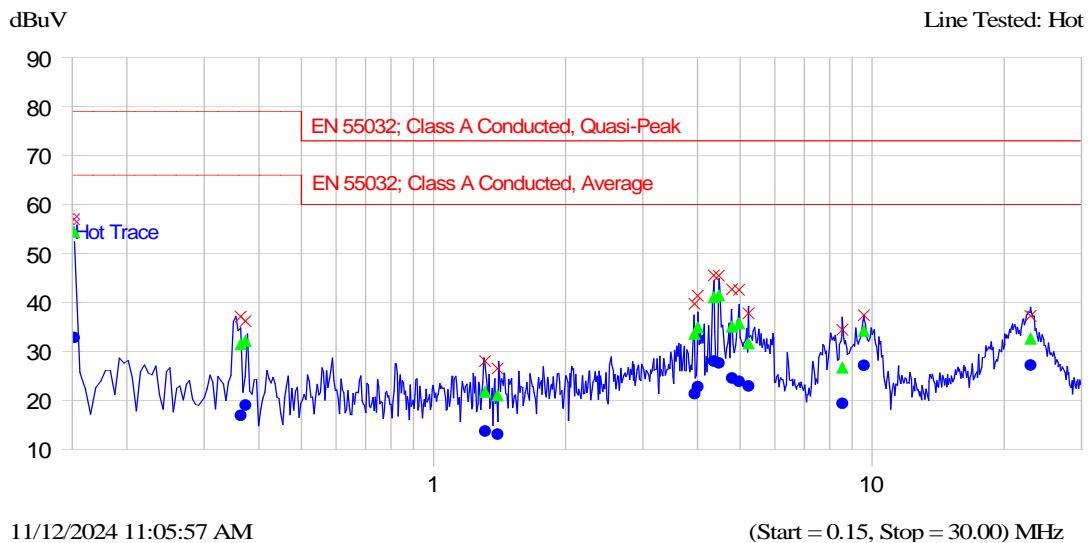
Refer to Test Procedures ULTR P001-2004, CISPR 32 / EN 55032, ANSI C63.4.

#### Calculation of Conducted Emission Voltage (dB $\mu$ V):

This is calculated by adding the L.I.S.N factor, Cable loss factor, and Attenuator factor to the measured reading. The basic equation with a sample calculation is as follows:

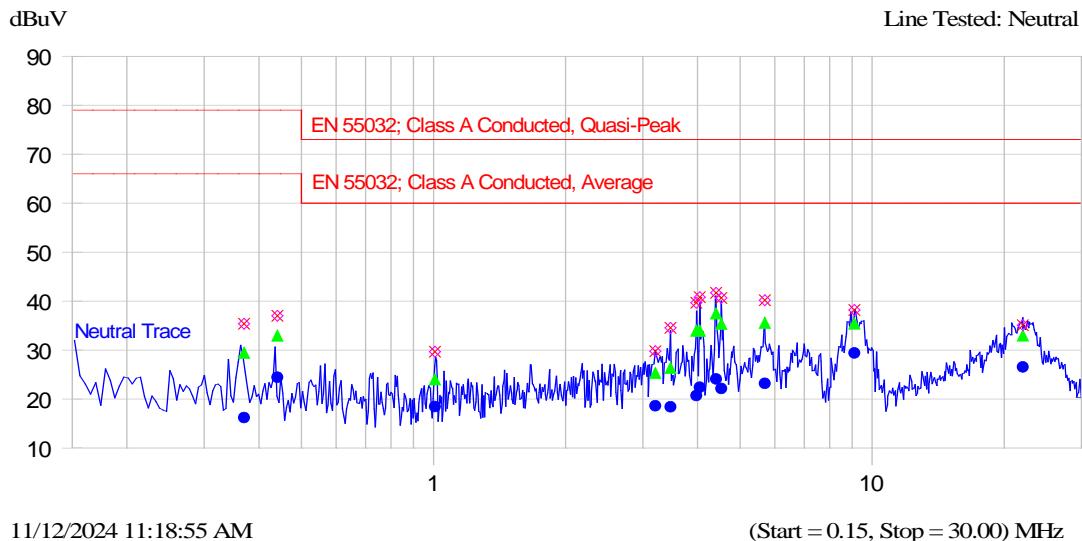
$$\text{Voltage (dB}\mu\text{V)} = \text{RA} + \text{AF} + \text{CF} + \text{LF}$$

Where


RA = Receiver/Analyzer Reading in dB $\mu$ V  
AF = Attenuation Factor in dB  
CF = Cable loss Factor in dB  
LF = L.I.S.N Factor in dB

#### 5.1.3. Test Instruments

Please refer to Exhibit 6 for Test Instruments and Measurement Uncertainty.


### 5.1.4. Test Results

Description: Line Voltage:230Vac  
 Mode Tested: Color Bar  
 Setup Name: EN-55032 Class A  
 Customer Name: Elprotronics  
 Project Number: ELP-018Q  
 Operator Name: Kendrick  
 EUT Name: Universal Gang Programmer, M/N: C-GANG



| Frequency<br>MHz | Peak<br>dBuV | QP<br>dBuV  | QP-QP Limit<br>dB | Avg<br>dBuV | Avg-Avg Limit<br>dB | Trace Name |
|------------------|--------------|-------------|-------------------|-------------|---------------------|------------|
| 0.152            | <b>57.0</b>  | <b>54.4</b> | <b>-24.6</b>      | 32.9        | -33.1               | Hot Trace  |
| 0.364            | 37.1         | 31.4        | -47.6             | 17.0        | -49.0               | Hot Trace  |
| 0.373            | 36.2         | 32.1        | -46.9             | 19.1        | -46.9               | Hot Trace  |
| 1.311            | 28.0         | 21.7        | -51.3             | 13.7        | -46.3               | Hot Trace  |
| 1.400            | 26.5         | 21.0        | -52.0             | 13.1        | -46.9               | Hot Trace  |
| 3.935            | 39.7         | 33.6        | -39.4             | 21.4        | -38.6               | Hot Trace  |
| 4.000            | 41.4         | 34.9        | -38.1             | 22.8        | -37.2               | Hot Trace  |
| 4.357            | 45.5         | 41.0        | -32.0             | 28.0        | -32.0               | Hot Trace  |
| 4.471            | 45.5         | 41.4        | -31.6             | 27.7        | -32.3               | Hot Trace  |
| 4.792            | 42.7         | 35.0        | -38.0             | 24.6        | -35.4               | Hot Trace  |
| 4.969            | 42.6         | 35.7        | -37.3             | 23.9        | -36.1               | Hot Trace  |
| 5.227            | 37.8         | 31.6        | -41.4             | 23.0        | -37.0               | Hot Trace  |
| 8.553            | 34.4         | 26.7        | -46.3             | 19.4        | -40.6               | Hot Trace  |
| 9.580            | 37.4         | 34.1        | -38.9             | 27.2        | -32.8               | Hot Trace  |
| 22.973           | 37.3         | 32.6        | -40.4             | 27.2        | -32.8               | Hot Trace  |

Description: Line Voltage:230Vac  
 Mode Tested: Color Bar  
 Setup Name: EN-55032 Class A  
 Customer Name: Elprotronics  
 Project Number: ELP-018Q  
 Operator Name: Kendrick  
 EUT Name: Universal Gang Programmer, M/N: C-GANG



| Frequency<br>MHz | Peak<br>dBuV | QP<br>dBuV | QP-QP Limit<br>dB | Avg<br>dBuV | Avg-Avg Limit<br>dB | Trace Name    |
|------------------|--------------|------------|-------------------|-------------|---------------------|---------------|
| 0.370            | 35.4         | 29.4       | -49.6             | 16.2        | -49.8               | Neutral Trace |
| 0.441            | 37.0         | 32.9       | -46.1             | 24.5        | -41.5               | Neutral Trace |
| 1.007            | 29.7         | 24.0       | -49.0             | 18.5        | -41.5               | Neutral Trace |
| 3.203            | 29.8         | 25.3       | -47.7             | 18.6        | -41.4               | Neutral Trace |
| 3.469            | 34.6         | 26.3       | -46.7             | 18.4        | -41.6               | Neutral Trace |
| 3.976            | 39.7         | 33.9       | -39.1             | 20.7        | -39.3               | Neutral Trace |
| 4.048            | 40.8         | 33.9       | -39.1             | 22.4        | -37.6               | Neutral Trace |
| 4.406            | 41.7         | 37.4       | -35.6             | 24.1        | -35.9               | Neutral Trace |
| 4.530            | 40.6         | 35.3       | -37.7             | 22.2        | -37.8               | Neutral Trace |
| 5.692            | 40.2         | 35.5       | -37.5             | 23.2        | -36.8               | Neutral Trace |
| 9.108            | 38.2         | 35.4       | -37.6             | 29.4        | -30.6               | Neutral Trace |
| 22.053           | 35.1         | 33.0       | -40.0             | 26.6        | -33.4               | Neutral Trace |

## 5.2. ELECTROMAGNETIC RADIATION DISTURBANCE FROM 30 MHZ TO 3 GHZ

### 5.2.1. Limits

| Frequency (MHz)                     | CLASS A Limit dB ( $\mu$ V/m) |               |          |
|-------------------------------------|-------------------------------|---------------|----------|
|                                     | Detector                      | Distance      |          |
| 30 to 230                           | 40 Quasi-Peak                 | 10m           |          |
| 230 to 1000                         | 47 Quasi-Peak                 | 10m           |          |
| 1000 to 3000                        | 56 Average, 76 Peak           | 3m            |          |
| 3000 to 6000                        | 60 Average, 80 Peak           | 3m            |          |
| Frequency (MHz)                     | CLASS B Limit dB ( $\mu$ V/m) |               |          |
|                                     | Detector                      | Distance      |          |
| 30 to 230                           | 30 Quasi-Peak                 | 10m           |          |
| 230 to 1000                         | 37 Quasi-Peak                 | 10m           |          |
| 1000 to 3000                        | 50 Average, 70 Peak           | 3m            |          |
| 3000 to 6000                        | 54 Average, 74 Peak           | 3m            |          |
| Limit dB ( $\mu$ V/m) - FM Receiver |                               |               |          |
| Frequency (MHz)                     | Fundamental                   | Harmonics     |          |
|                                     | Detector                      | Detector      | Distance |
| 30 to 230                           | 50 Quasi-Peak                 | 42 Quasi-Peak | 10m      |
| 230 to 300                          |                               | 42 Quasi-Peak | 10m      |
| 300 to 1000                         |                               | 46 Quasi-Peak | 10m      |

### 5.2.2. Method of Measurements

Refer to Exhibit 7 of this report, CISPR 32 / EN55032, CISPR 16-1-1 and ANSI C63.4  
 The EUT shall be scanned from 30 MHz to 3 GHz.

#### Calculation of Field Strength:

The field strength is calculated by adding the calibrated antenna factor and cable factor, and subtracting the Amplifier gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS = Field Strength  
 RA = Receiver/Analyzer Reading  
 AF = Antenna Factor  
 CF = Cable Attenuation Factor  
 AG = Amplifier Gain

### 5.2.3. Test Instruments

Please refer to Exhibit 6 for Test Instruments and Measurement Uncertainty.

### 5.2.4. Test Results

Mode tested: Color Bar

The emissions were scanned from 30 MHz to 1 GHz at 10 Meters distance and all emissions below the limits were recorded.

| FREQUENCY (MHz) | RF LEVEL (dBuV/m) | DETECTOR USED (PEAK/QP) | ANTENNA PLANE (H/V) | LIMIT (dBuV/m) | MARGIN (dB) | PASS/FAIL |
|-----------------|-------------------|-------------------------|---------------------|----------------|-------------|-----------|
| 31.55           | 31.7              | QP                      | V                   | 40.0           | -8.3        | PASS      |
| 62.64           | 34.4              | PEAK                    | V                   | 40.0           | -5.6        | PASS      |
| 79.74           | 33.7              | PEAK                    | V                   | 40.0           | -6.3        | PASS      |
| 117.05          | 28.06             | PEAK                    | V                   | 40.0           | -11.9       | PASS      |
| 145.03          | 27.08             | PEAK                    | V                   | 40.0           | -12.9       | PASS      |
| 376.65          | 31.8              | PEAK                    | H                   | 47.0           | -15.2       | PASS      |
| 640.91          | 39.85             | PEAK                    | V                   | 47.0           | -7.2        | PASS      |
| 640.91          | 36.51             | PEAK                    | H                   | 47.0           | -10.5       | PASS      |
| 682.88          | 37.87             | PEAK                    | V                   | 47.0           | -9.1        | PASS      |
| 682.88          | 34.22             | PEAK                    | H                   | 47.0           | -12.8       | PASS      |
| 720.19          | 35.76             | PEAK                    | V                   | 47.0           | -11.2       | PASS      |

The emissions were scanned from 1 to 3 GHz at 3 Meters distance and all emissions below the limits were recorded.

| FREQUENCY (MHz) | RF LEVEL (dBuV/m) | DETECTOR USED (PEAK/AVG) | ANTENNA PLANE (H/V) | LIMIT (dBuV/m) | MARGIN (dB) | PASS/FAIL |
|-----------------|-------------------|--------------------------|---------------------|----------------|-------------|-----------|
| 1022            | 34.1              | PEAK                     | H                   | 56.0           | -21.9       | PASS      |
| 1080            | 32.8              | PEAK                     | V                   | 56.0           | -23.2       | PASS      |
| 1089            | 34.23             | PEAK                     | H                   | 56.0           | -21.8       | PASS      |
| 1147            | 33.9              | PEAK                     | H                   | 56.0           | -22.1       | PASS      |
| 1996            | 39.0              | PEAK                     | V                   | 56.0           | -17.0       | PASS      |
| 1996            | 36.6              | PEAK                     | H                   | 56.0           | -19.4       | PASS      |
| 2128            | 39.4              | PEAK                     | V                   | 56.0           | -16.6       | PASS      |

## EXHIBIT 6. TEST INSTRUMENTS & MEASUREMENT UNCERTAINTY

### 6.1. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC: 2011 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

Expanded measurement uncertainty is specified with a coverage factor of  $k=2$  for a 95% Confidence level.

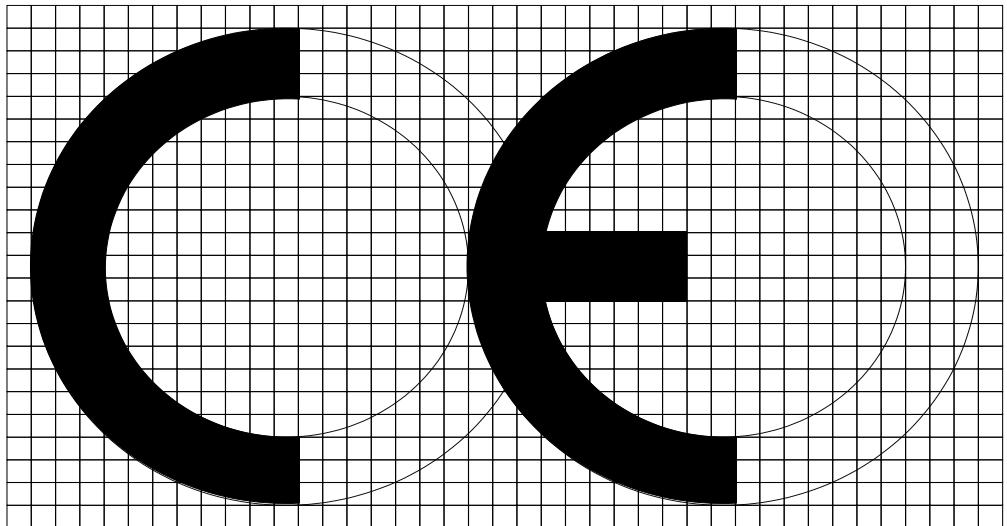
| Test description                                            | $U_{LAB}$  | $U_{CISPR}$ |
|-------------------------------------------------------------|------------|-------------|
| Power Line Conducted Emission Uncertainty(150 KHz – 30 MHz) | $\pm 2.62$ | 3.4         |
| Radiated Emissions Measurement Uncertainty (30-1000 MHz)    | $\pm 4.82$ | 6.3         |
| Radiated Emissions Measurement Uncertainty (above 1 GHz)    | $\pm 3.43$ | 5.2         |

### 6.2. TEST EQUIPMENT LIST

#### 6.2.1. Line Conducted Emissions

| Test Instruments                                                                  | Manufacturer    | Model No. | Serial No. | Cal Due Date |
|-----------------------------------------------------------------------------------|-----------------|-----------|------------|--------------|
| EMI Analyzer                                                                      | Agilent         | 8593EM    | 3710A00223 | 9-May-2025   |
| LISN                                                                              | EMCO            | 3825/2    | 8907-1531  | 6-Mar-2025   |
| Attenuator                                                                        | Rohde & Schwarz | EZ-25     | 100064     | 9-Nov-2025   |
| Test Software: Agilent (HP) E7415A EMI Test Measurement Software, version A.01.40 |                 |           |            |              |

Test Date: Nov. 12, 2024


#### 6.2.2. Radiated Emissions

| Test Instruments  | Manufacturer    | Model No. | Serial No. | Freq. Range       | Cal Due Date |
|-------------------|-----------------|-----------|------------|-------------------|--------------|
| EMI Receiver      | Rohde & Schwarz | ESU40     | 100037     | 20 Hz to 40 GHz   | 18-Sep-25    |
| Biconilog Antenna | EMCO            | 3142C     | 34792      | 26 – 3000 MHz     | 16-Dec-25    |
| Pre-Amplifier     | Com-Power       | PAM-118A  | 550152     | 500 MHz to 18 GHz | 07-Oct-25    |
| Horn Antenna      | EMCO            | 3115      | 9701-5061  | 1GHz – 18 GHz     | 4-Sep-26     |

Test Date: Nov. 12, 2024

## EXHIBIT 7. LABELLING REQUIREMENTS

### The CE Mark with respect to the EMC Directive 2014/30/EU



The CE mark shall consist of the initials "CE" taking the following form

- If the CE marking is reduced or enlarged, the proportions given in the above graduated drawing must be respected.
- Where apparatus is the subject of other Directives covering other aspects and which also provide for the CE conformity marking, the latter shall indicate that the appliances are also presumed to conform to those other Directives.
- However, where one or more of these Directives allow the manufacturer, during a transitional period, to choose which arrangements to apply, the CE mark shall indicate conformity only to the Directives applied by the manufacturer. In this case, particulars of the Directive applied, as published in the Official Journal of the European Communities, must be given in the documents, notices or instructions required by the Directives and accompanying such apparatus.

The various components of the CE marking must have substantially the same vertical dimension, which may not be less than 5mm.

## UKCA marking

### Placing the UKCA marking

In most cases, you must apply the UKCA marking to the product itself or to the packaging. In some cases, it may be placed on the manuals or on other supporting literature. This will vary depending on the specific regulations that apply to the product.

The following general rules apply:

- UKCA markings must only be placed on a product by you as the manufacturer or your authorised representative (where allowed for in the relevant legislation)
- when attaching the UKCA marking, you take full responsibility for your product's conformity with the requirements of the relevant legislation
- you must only use the UKCA marking to show product conformity with the relevant UK legislation
- you must not place any marking or sign that may misconstrue the meaning or form of the UKCA marking to third parties
- you must not attach other markings on the product which affect the visibility, legibility or meaning of the UKCA marking
- the UKCA marking cannot be placed on products unless there is a specific requirement to do so in the legislation

### Rules for using the UKCA image

You must make sure that:

- if you reduce or enlarge the size of your marking, the letters forming the UKCA marking must be in proportion to the version set out below
- the UKCA marking is at least 5mm in height for the whole logo, not individual letters – unless a different minimum dimension is specified in the relevant legislation
- the UKCA marking is easily visible, legible (from 1 January 2023 it must be permanently attached)



\*\* END OF REPORT \*\*