GangPro-CC Flash Programmer

for the CC series devices - Chipcon product from TI

Remote Control Programming User’s Guide

PMO025A02 Rev.2
December-17-2007

Elprotronic Inc.

Elprotronic Inc.

16 Crossroads Drive

Richmond Hill,

Ontario, L4E-5C9

CANADA

Web site: www.elprotronic.com
E-mail: info @elprotronic.com
Fax: 905-780-2414

Voice: 905-780-5789

Copyright © Elprotronic Inc. All rights reserved.

Disclaimer:

No part of this document may be reproduced without the prior written consent of Elprotronic Inc.
The information in this document is subject to change without notice and does not represent a
commitment on any part of Elprotronic Inc. While the information contained herein is assumed to
be accurate, Elprotronic Inc. assumes no responsibility for any errors or omissions.

In no event shall Elprotronic Inc, its employees or authors of this document be liable for special,
direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claims for lost
profits, fees, or expenses of any nature or kind.

The software described in this document is furnished under a licence and may only be used or copied
in accordance with the terms of such a licence.

Disclaimer of warranties: You agree that Elprotronic Inc. has made no express warranties to You
regarding the software, hardware, firmware and related documentation. The software, hardware,
firmware and related documentation being provided to You “AS IS” without warranty or support
of any kind. Elprotronic Inc. disclaims all warranties with regard to the software, express or implied,
including, without limitation, any implied warranties of fitness for a particular purpose,
merchantability, merchantable quality or noninfringement of third-party rights.

Limit of liability: In no event will Elprotronic Inc. be liable to you for any loss of use, interruption
of business, or any direct, indirect, special incidental or consequential damages of any kind
(including lost profits) regardless of the form of action whether in contract, tort (including
negligence), strict product liability or otherwise, even if Elprotronic Inc. has been advised of the
possibility of such damages.

END USER LICENSE AGREEMENT

PLEASE READ THIS DOCUMENT CAREFULLY BEFORE USING THE SOFTWARE AND
THE ASSOCIATED HARDWARE. ELPROTRONIC INC. AND/OR ITS SUBSIDIARIES
(“ELPROTRONIC”) IS WILLING TO LICENSE THE SOFTWARE TO YOU AS AN
INDIVIDUAL, THE COMPANY, OR LEGAL ENTITY THAT WILL BE USING THE
SOFTWARE (REFERENCED BELOW AS “YOU” OR “YOUR”) ONLY ON THE CONDITION
THAT YOU AGREE TO ALL TERMS OF THIS LICENSE AGREEMENT. THIS IS A LEGAL
AND ENFORCABLE CONTRACT BETWEEN YOU AND ELPROTRONIC. BY OPENING THIS
PACKAGE, BREAKING THE SEAL, CLICKING “I AGREE” BUTTON OR OTHERWISE
INDICATING ASSENT ELECTRONICALLY, OR LOADING THE SOFTWARE YOU AGREE
TO THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO
THESE TERMS AND CONDITIONS, CLICK ON THE “I DO NOT AGREE” BUTTON OR
OTHERWISE INDICATE REFUSAL, MAKE NO FURTHER USE OF THE FULL PRODUCT
AND RETURN IT WITH THE PROOF OF PURCHASE TO THE DEALER FROM WHOM IT
WAS ACQUIRED WITHIN THIRTY (30) DAYS OF PURCHASE AND YOUR MONEY WILL
BE REFUNDED.

1. License.

The software, firmware and related documentation (collectively the “Product”) is the property of
Elprotronic or its licensors and is protected by copyright law. While Elprotronic continues to own
the Product, You will have certain rights to use the Product after Your acceptance of this license.
This license governs any releases, revisions, or enhancements to the Product that Elprotronic may
furnish to You. Your rights and obligations with respect to the use of this Product are as follows:

YOU MAY:

A. use this Product on many computers;

B. make one copy of the software for archival purposes, or copy the software onto the hard disk
of Your computer and retain the original for archival purposes;

C. use the software on a network

YOU MAY NOT:

A. sublicense, reverse engineer, decompile, disassemble, modify, translate, make any attempt

to discover the Source Code of the Product; or create derivative works from the Product;
B. redistribute, in whole or in part, any part of the software component of this Product;

C. use this software with a programming adapter (hardware) that is not a product of
Elprotronic Inc.

2. Copyright

All rights, title, and copyrights in and to the Product and any copies of the Product are owned by
Elprotronic. The Product is protected by copyright laws and international treaty provisions.
Therefore, you must treat the Product like any other copyrighted material.

3. Limitation of liability.

In no event shall Elprotronic be liable to you for any loss of use, interruption of business, or any
direct, indirect, special, incidental or consequential damages of any kind (including lost profits)
regardless of the form of action whether in contract, tort (including negligence), strict product
liability or otherwise, even if Elprotronic has been advised of the possibility of such damages.

4. DISCLAIMER OF WARRANTIES.

You agree that Elprotronic has made no express warranties to You regarding the software, hardware,
firmware and related documentation. The software, hardware, firmware and related documentation
being provided to You “AS IS” without warranty or support of any kind. Elprotronic disclaims all
warranties with regard to the software and hardware, express or implied, including, without
limitation, any implied warranties of fitness for a particular purpose, merchantability, merchantable
quality or noninfringement of third-party rights.

This device complies with Part 15 of the FCC Rules.
Operation is subject to the following two conditions:
(1) this device may not cause harmful interference and

(2) this device must accept any interference received,
including interference that may cause undesired
operation.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital devices,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy
and, if not installed and used in accordance with the instruction manual, may cause harmful interference to
radio communications. However, there is no guarantee that interference will not occur in a particular
installation. If this equipment does cause harmful interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one
of more of the following measures:

* Reorient or relocate the receiving antenna

* Increase the separation between the equipment and receiver

* Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
&

Consult the dealer or an experienced radio/TV technician for help.

Warning: Changes or modifications not expressly approved by Elprotronic Inc. could void the user’s authority
to operate the equipment.

This Class B digital apparatus meets all requirements of the Canadian
Interference-Causing Equipment Regulations.

Cet appereil numerique de la classe B respecte toutes les exigences du
Reglement sur le material brouilleur du Canada.

Table of Contents

L Introduction e 9
2.Demo Program e 18
3.Getting Startedo e 27
3.1 Example with single FPA APIDLL 27

3.2 Example with Multi-FPA APIDLL, 28

4. List of the DLL INStruCtiONSo i ittt et et et et e e e aas 31
4.1 Multi-FPA InStructionsttt 33
F_Trace_ON e e e e e 33

F_Trace_OFF e e e e e 33
F_OpenInstances i 33

F CloseInStancCesot e e, 34
F_OpenlnstancesAndFPAs, F_Openlnstances_AndFPAs 34
F_APIL_DLL_DIirectoryuuutiniiiinnenn.. 38

F Set FPA_INdEX ... oot e e, 39

F Get_ FPA_INdeX . .. oot e e e, 40
F_Disable_FPA_Indexc.. it 40
F_Enable_FPA_index i, 40

F LastStatuso oot 41
F_Multi_DLLTypeVer e 41
F_Get_FPA_SN ... 42

4.2 GEeNeric INStIUCHIONS . . . vttt t e et e et e et e et et e ee s 43

F Check FPA_aCCESS . ..o oot e e, 43
F_DLLTYpeVer e e e e e 44
F_Initialization e e e 45

F_Close_All e 46

FoGetSetup ..o e 47
F_ConfigSetup 47

F_SetConfigo 50

F_GetConfig 56

FoDiSpSetup . . oot e 56

F_ReportMessage, F_Report_Message 57

F_GetReportMessageChar i, 58
F ReadCodeFile, F Read CodeFile 59
F_Get_CodeCS 61
F_ConfigFileLoad, F_Config_FileLoad 61
F Clr_Code Buffer 62
F_Put_Byte_to_Code_Buffer.............. 63
F_Get_Byte_from_Code_Buffer 64
F_Put_IEEEAddr64_to_Gang Buffer 64
F_Put_IEEEAddr_Byte_to_Gang_Buffer 65
F_Get_IEEEAddr64_from_Gang_Buffer 65
F_Get_IEEEAddr_Byte from_Gang Buffer......................... 66
F_Get_Lock _Bits 66
F_Power_Targeto e 67
F_Reset_Target it 68
F_Get_Targets_Result 68
F_Get_Active_Targets_Mask 69
F_Get_Targets_Vee . ..ot e e 70
4.3 Encapsulated inStructionso vttt 71
F_AutoProgram e 71
F_Verify_Lock Bit 72
F_Memory_Erase e 73
F_Memory_Blank_Check 73
F_Memory_Write 74
F_Memory_Verify 74
F_Gang_Flash_Read 75
F_Write_ IEEE_Address i 76
F_Read_IEEE_Address 76
F_Write_Lock_Bits 77
4.4 Sequential INStIUCHIONSttt e e et 78
F_Open_Target_Devicec .. 79
F_Close_Target_Devicet 80
F_Segment_Erase........ 80
F Sectors_Blank_Check i, 81
F_Write_Byte_to_ XRAM 82
F_Write_Byte to_direct RAM 82
F_Copy_Buffer_to_Flash 83
F_Copy_Gang_Buffer_to_Flash 84

F_Copy_Flash_to_Gang Buffer 85

F_Copy_Buffer_to_XRAM it 85
F_Copy_Gang_Buffer_to_ XRAM 86

F _Copy_XRAM_to_Gang Buffer......... 87
F_Copy_Buffer_to_direct RAM i 88
F_Copy_Gang_Buffer_to_direct RAM 89
F_Copy_direct RAM_to_Gang_Buffer 89
F_Put_Byte_to_Gang_Buffer 90
F_Get_Byte from_Gang Buffer 91

F_Set_ PC_and_RUN i 92
F_Copy_ MCU_Data_to_Buffer.............. 92
F_Get_MCU_Data_from_Buffer 93
Appendix A 94
GangPro-CC Command Line interpreterooiutirenennenn... 94

1. Introduction

GangPro-CC Flash Programmer (USB) can be remotely controlled from other
software applications (Visual C++, Visual Basic etc.) via a DLL library. The Multi-FPA - allows
to remotely control simultaneously up to eight Flash Programming Adapters (FPAs)
significantly reducing programming time in production.

Figure 1.1 shows the connections between PC and up to eight programming adapters. The
FPAs can be connected to PC USB ports directly or via USB-HUB. Direct connection to the PC
is faster but if the PC does not have required number of USB ports, then USB-HUB can be used.
The USB-HUB should be fast, otherwise speed degradation can be noticed. When the USB hub
is used, then the D-Link’s Model No: DUB-H7, P/N BDUBH7..A2 USB 2.0 HUB is
recommended.

GangPro-CC - Multi USB-FPA option

Up to 48 target devices can be programmed simultaneously

to one FPA

= = e o = -

Up to six devices

[Il

8 USBs connection from PC.
Directly or via USB-HUB

Via USB HUB

Up to eight FPAs to one PC

e - o o e e e o o e

Figure 1.1

Block diagram of the Multi-FPA application DLL is presented on the Figure 1.2.

Remote Control Programming User’s Guide PMO025A02 Rev.2

10

To support the Multi-FPA API-DLL feature, the software package contains nine dll files

GangPro-CC Multi-FPA API-DLL

Application Software (C++, LabVIEW etc.)

!

j Multi-FPA DLL Selector and Task Manager

z 1

a ;) !

< | API-DLL l API-DLL pereccnnannans -I API-DLL

E Simultaneous processes

E | UsB-1 ‘usa-z | usB-8
"EE FPA-1 FPA-2 |erererererenes FPA-8 |

.

Device-6

Figure 1.2

- the Multi-FPA API-DLL selector
- eight standard single FPAs API-DLLs

Figure 1.3 shows the logical connections between dll files.

Remote Control Programming User’s Guide PMO025A02 Rev.2 11

GangPro-CC Multi FPA API-DLL

Application

l Note:

F_Set FPA_index (fpa);

F_function {.........
GangProCCFPAselDLL fpa - 1...8 to selected FPA
or— 0 toALL FPAs
F function {..cceeennds =" 9 A

GangProCC-FPA1.DLL GaNGPrOCCFPAZDLL feesrssnsssmssnmmmsnninsninarasasns GangProCC-FPAS.DLL
. ! .
USB-Port-x remapping USB-Port-x remapping feesssssssssesemmsnmsnninsnnianey USB-Port-x remapping
. ' .
USB-FPA-1 USBOEPRT focisssusosoisissssssiususssmisiindcs USB-FPA-8
l l l
Target Device 1.6 Target Device 7,12 feisnammmmmmmisiminainins Target Device 43..48
Figure 1.3

The main GangProCC-FPAsel.dll (Multi-FPA selector) allows to transfer API-DLL
functions coming from an application software to desired single application dll (GangProCC-
FPA1.dll to GangProCC-FPAS.dIl).

Note: Software package contains one GangProCC-FPAI.DLL. Files GangProCC-
FPA2.DLL to GangProCC-FPAS.DLL will be copied automatically if required.

The GangProCC-FPAsel.dll is transparent for all API-DLL functions implemented in the
single API-DLLs functions. Desired destination FPA can be selected using the selector function
added to the Multi-FPA selector (GangProCC-FPAsel.dll).

F_Set_FPA_index(fpa);
where the

fpa =1 to 8 when the only one desired FPA required to be selected

Remote Control Programming User’s Guide PMO025A02 Rev.2 12

or
fpa =0 when ALL active FPAs should be selected.

The selected FPA index modified by the F_Set_FPA_index(fpa) instruction can be
modified at any time. By default, the FPA index is 1 and if only one FPA is used then fpa index
does not need to be initialized or modified. When the fpa index 1 to 8 is used, then the result is
coming back to application software from the single API-DLL via transparent Multi-FPA
selector. When the fpa index is O (ALL-FPAs) and results are the same from all FPAs, then the
same result is passing back to application software. If results are not the same, then the Multi-
FPA selector DLL is returning value -1 (minus 1) and all recently received results can be read
individually using function

F_LastStatus(fpa)

Most of the implemented functions allows to use the determined fpa index 1 to 8 or O
(ALL-FPAs). When functions return specific value back, like read data etc, then only determined
FPA index can be used (fpa index from 1 to 8). When the fpa index is O (ALL-FPAs) then
almost all functions are executed simultaneously. Less critical functions are executed
sequentially from FPA-1 up to FPA-8 but that process can not be seen from the application
software.

When the inactive fpa index is selected, then return value from the selected function is -2
(minus 2). When all fpa has been selected (fpa index = 0) then only active FPAs will be serviced.
For example if only one FPA is active and fpa index=0, then only one FPA will be used. It is
save to prepare the universal application software that allows to remote control up to eight FPAs
and on the startup activate only desired number of FPAs.

It should be noticed, that all single API-DLLs (GangProCC-FPA1.dll to GangProCC-
FPAS.dll) used with the Multi-FPA DLL (GangProCC-FPAsel.dll) are fully independent to each
other. From that point of view it is not required that transferred data to one FPA should be the
same as the transferred data to the others FPAs. For example code data downloaded to FPA-1 can
be different that the code data downloaded to the FPA-2, FPA-3 etc. But even in this case the
programming process can be done simultaneously. In this case the desired code should be read
from the code file and saved in the API-DLL-1, next code file data should be saved in the API-
DLL-2 etc. When it is done, then the F_AutoProgram can be executed simultaneously with
selected all active FPAs. All FPAs will be serviced by his own API-DLL and data packages
saved in these dlls.

Remote Control Programming User’s Guide PMO025A02 Rev.2 13

The GangPro-CC Flash Programmer software package contains all required files to
remotely control programmer from a software application. When software package is installed
then by default the DLL file, library file and header file are located in:

C:\Program Files\Elprotronic\CCxx\USB GangPro-CC\API-DLL

GangProCC-FPAsel.dll - Multi-FPA selection / task manager API- DLL
GangProCC-FPA1.dll - Single api-DLL for the UAB-FPA
GangProCC-DIl.h - header file for C++

GangProCC-Dos-DIl.h - header file for C++ (Borland) or DOS
GangProCC-FPAsel.lib - lib file for C++

GangProCC-FPAsel-BC.lib - lib file for C++ (Borland)

config.ini - default configuration file for the FPAs
FPAs-setup.ini - FPAs- vs USB ports configuration file

The GangProCC-FPAsel.dll contains two groups of the same functions used in C++
application and Visual Basic (or similar) applications All procedure names used in Visual Basic
are starting from VB_xxxx, when the procedure names used in C++ are starting from F_xxxx.
All functions starting from F_xxxx using the _Cdecl declarations used in C++ . Function names
starting from VB_xxxx has the _stdcall calling declaration required in Visual Basic.

Reminding files listed above are required in run time - to initialize the flash programming
adapter (config.ini) and USB setup (FPAs-setup.ini).

When the C++ application is created, then following files should be copied to the source
application directory:

GangProCC-DIl.h - header file for C++

GangProCC-FPAsel.lib - lib file for C++ (Microscoft Visual C++)
or

GangProCC-Dos-DIl.h - header file for C++

GangProCC-FPAsel-BC.lib - lib file for C++ (Borland C++)

and to the release/debug application directory

GangProCC-FPAsel.dll - Multi-FPA selection / task manager DLL
GangProCC-FPA1.dll - API-DLL for the USB-FPA
config.ini - default configuration file for the FPAs

Remote Control Programming User’s Guide PMO025A02 Rev.2 14

FPAs-setup.ini - FPAs- vs USB ports configuration file

Executable application software package in C++ or when application in Visual Basic is created,
then following files should be copied to the source or executable application directory:

GangProCC-FPAsel.dll
GangProCC-FPA1.dll
config.ini
FPAs-setup.ini

All these files ‘as is’ should be copied to destination location, where an application software
using the DLL library.

The config.ini file has default setup information. This file can be modified and taken directly
form the GangPro-CC Flash Programmer application software. To create required config.ini file
the standard GangPro-CC Flash programmer software should be open and required setup
(memory option, communication speed etc) should be created. When this is done, programming
software should be closed and the config.ini file with the latest saved configuration copied to
destination location. Note, that the configuration setup can be modified using DLL library
function.

Software package has a demo software written under Visual C++.net. All files and source
code are located in:

C:\Program Files\Elprotronic\CCxx\USB GangPro-CC\API-DLL-Demo\Cpp\Demo-1
and
C:\Program Files\Elprotronic\CCxx\USB GangPro-CC\API-DLL-Demo\Cpp\Demo-8x6

Figure 1.4 shows the logical connections between flash programming adapter (FPA) and
six target devices. This connection can be done using the GangPro-CC splitter (see schematic
presented on figure 1.5)

Remote Control Programming User’s Guide PMO025A02 Rev.2 15

LI]

RST
GHD

s TARGET
GEYICE
¢ 0OC 5
2 [0
a R5T
. 2 e TARGET
GEYICE
a [T 5
& [0
From GangPro—CC —
& RST
° She TARGET
DD=Bgq3 150008 DEVICE
ST, 41 1pg 00—t
OMD, g 0o 003 | S T 4
DC .+ ggYddEn @ 00
do not use, g o po-2 —
do not use, 3 #G_Sense ; eHD
DD-1,, g,¥dd/Sense t 5 VG TARGET
GEYICE
€ 0OC 3
2 [0
a A5T
. o e TARGET
GEYICE
a [IC 2
& [0
s RST
o oha TARGET
GEYICE
e 0C 1
2 00
Figure 1.4
Remote Control Programming User’s Guide PMO025A02 Rev.2 16

Jz

ELPROTRONIC INC.

s o —— GongPro—CC Splitter
+ __—)
g <:>'|'EHJ—| Z
: WDD{E) Vdd/manoe o 154 4 ﬂ
: WEE-EH EEEE: Target—1
Raw ~lesuns
oo § A -4|Er— e SoC/debug
Wid /mansn z
IEXYY!
" * Target—2
s208w
GHO Ll;- .4 LA TR SDCdeng
-
Wid/ eenen E
ITYYY!
1]
001 [o g |z VEC-SW n seeve Target—3
Al g gte ‘WeC—wanEs &HO = "I P e Scﬂfdehug
2| g g a OB g |E
DC 7] g gt TEST
_w—. ‘__mI:H}—.'.‘— 'u'dd.-"un;n g.{ 44
a EST y » 8t OB-4 L
S Tl R . : : : : : Target—4
From GangPro—CC I u||: e SeC/debug
Wid / nanan ;4 _I #
" # : : f t Target—&
go 'i|: wvan SeC/debug
[=] L7
Wdd s=nze EJ 4 '4
XEEX Target—6
) LI
| TJ '°T“ ysj SoC/debug
- GHD o E
Figure 1.5
Remote Control Programming User’s Guide PMO025A02 Rev.2 17

2. Demo program

The first demo program is small GUI program with a lot of buttons allowing to separately

call functions using DLL library package software. Source code and all related project files are

located in the following directory:

C:\Program Files\Elprotronic\CCxx\USB GangPro-CC\API-DLL-Demo\Cpp\Demo-1

Program can be activated by selecting the GangProCC-DLL-DemoCpp.exe located in the \release
subdirectory. This demo program can also be activated from the windows menu:

Start->Program->Elprotronic-Flash Programmer->(CCxx) USB GangPro-CC->API-DLL-Demo-Cpp

B

ig GangProCC Flash Programmer API-DLL Demo

X

DLLs and FPAs Initislization ~ FPAz selector
Default Frarn File [recommended) 1: 20070031
|_;[1. Total rio of FPAs 2. Open Instances | FF4. assignment | ? % 20070032

R i
LFFALst | 4 FPA assigment | Open FPAs-selupi | P
B
ke
e
1. Iniialzation | DLL Software 1D | Closedll | Close Instances | = ALl

Exit |

Trace ON |
Trace OFF |

Trace rezult in the file
DLLtrace: tst

2 Setup File | |C:\EIprotronic'\Proiect'\Cpp-Chipcon'\GangProEC-DLL-MuIti-Demo'\HeIe

3. Open Code | |C:\EIprntronic'\F'loiect'\Cpp-Ehipcon'\GangPlDEC-DLL-MuIti-Demo'\HeIe

Target Devices

r Sequencial Functionz
 First

Open Target |

sy order

Get FRA's SN |

Communication speed
bz =

Emable 1 2 alC 4 5[&I e |
Dizplay Confi - s —
M Fesut 1 2 3 4 s &[T Encapsulated Functions
Blank Check Segm. |
 Powwer from FR&—— e
Flazh pragranming ... dong - MI 3 -
" erifying check sum .. OF. _I ¥ Enable Werify LOCK Bits |
/riting Lock bits ... done Riead Flash Block |
-------- DOME - [runtime = 10.2 zec.)
~FRaH3 Payer ON | Wite XFAM Black | Erase Flash
== futo Program ===
Power OFF | Fead “RAM Elock | Blank Check |
5oL communication initialization.... Ok
Erazing memany done Wiite direct Rab | :
50C communication initialization. .. OF. Targat's Ves Wwirite Flazh |
oK , 4| Read diect FsM |
Uzed Memary Blank checking.... 0k ;
Flazh pragrarnming dane e e Werify Flash |
"ernifying check sum . ok 228 | 35
rariting Lock: bits Set PC and Run |
-------- DONE — (1un time = 10.2 sec.] R _ Readflah |
T P Cloze Target |
] I Ox0003
Figure 2.1 Demo program dialogue screen using DLLs.
Remote Control Programming User’s Guide PMO025A02 Rev.2 18

When the demo program is activated, then the following dialogue screen is displayed (see figure
2.1). At the beginning the USB-FPA’s configuration file should be created, that contains list off
all FPAs used in the application. Using the Notepad editor the default FPA configuration file
‘FPAs-setup.ini’ should be opened by pressing the “Open FPAs-setup.ini” button in the
dialogue screen.

Take a serial numbers from the FPAs labels and write it on the desired FPAs locations FPA-1 up
to FPA-8. If for example two FPAs will be used with SN 20070031 and 20070032 then the
contents of the FPA’s configuration file will be as follows:

Minimum one FPA's must be specified
FPA-x order - any

;

; USB-FPA configuration setup *

; Elprotronic Inc. *
e
; up to eight FPA can be specified and connected via USB to PC

; syntax:

; FPA-x Serial Number

; where FPA-x can be FPA-1, FPA-2, FPA-3 up to FPA-8

; Serial number - get serial number from the desires FPA's label

;

;

;

;

e.g (without semicolon - comment)
;FPA-1 20050116
;FPA-3 20050199
;FPA-5 20050198

b S T e S S S S S .

FPA-1 20070031
FPA-2 20070032

Note, that only lines without comments (without semicolon on the front) are used by
software. All lines with comment are ignored. The FPA’s serial numbers and FPA’s indexes can
be listed in any order and with gap like FPA-1, FPA-5 etc. without FPA-2, 3 etc. Minimum one
valid FPA with correct SN must be specified. Up to eight FPAs can be declared. When the FPA’s
configuration file is created then file should be saved using name starting from FPA and with
extention ini e.g FPAs-setup.ini.

Connect all required FPA’s to USB connectors and run the GangProCC-
DLL-Demo-Cpp.exe demo software. First the DLL instances should be opened and all
connected FPA’s should be assigned to desired FPA’s indexes. It is recommended to press the
button ‘FPA assigment’ located inside the frame named ‘From File (recommended)’. When this
button is pressed, then the DLL function named

Remote Control Programming User’s Guide PMO025A02 Rev.2 19

F_OpenInstancesAndFPAs(FileName);

is called. The list of defined FPA’s serial numbers are taken from the FPAs configuration file and
assigned all FPAs to desired FPA indexes (1 to 8). Number of instances to be opened is
calculated automatically, one per available and valid FPA. On described example with two FPAs
in the ‘FPAs selector’ will display two valid FPAs with list of used FPAs’ serial numbers. All,
others FPA-x fields will be disabled. In this example only two DLL instances becomes opened.
Valid FPA indexes becomes 1,3 and ALL.

Note: When one or more FPA adapters are connected to PC and the “FPAs-setup.ini”

does not contain valid FPA serial numbers, then the first detected FPA (and only one)

will be activated.

Other method (old method - not recommended) that allows to open required number of
instances uses ‘2. Open Instances’ button in ‘Default’ frame. First the number of the instances
should be defined in the ‘Total no of FPAs’ location. When the ‘2. Open Instances’ button is
pressed, then the DLL function named

F_OpenInstances(no),

called where ‘no’ - number of instances to be opened.. When the dll instances are opened, then it
is possible to check the access to the FPA connected to PC via USB ports. Pressing button ‘3.
FPA list’ (function F_Check_FPA_access (index); called in loop for index = 1,2,3..8) allows
to check the access to these adapters. On the end the button ‘4. FPA assignment’ (function
F_Check_FPA_access (index); with desired ‘fpa’ and USB indexes) allows to assign desired
FPA adapter to fpa’ index. All these steps can be done automatically when the function
F_OpenInstancesAndFPAs (FileName) described above is used (used button ‘FPA
assigment’ located inside the frame named ‘From File (recommended)).

When the FPA(s)s has been assigned then all adapters should be activated by pressing the
‘1. Initialization’ button. This initialization calls the DLL function F_Initialization and
communication between programming adapter and PC is established. Report message is
displayed in the report window (uses the F_ReportMessage function). By default the config.ini
file is empty and to make a required programmer setup the setup file should be downloaded to
programmer. It can be done by pressing the button ¢ 2.Setup File’, (executing
F_ConfigFileLoad DLL function). Setup file can be prepared first using standard GangPro-CC
programming software with GUI. Also desired code file can be downloaded by pressing the
button ‘3. Open Code’ (executing F_ReadCodeFile DLL function).

Remote Control Programming User’s Guide PMO025A02 Rev.2 20

There are seven buttons located on the right side of demo dialogue screen. Each of them
calls one encapsulated function from the following list - F_AutoProgram, F_Memory_Erase,
F_Memory_Blank_Check, F_Memory_Write, F_Memory_Verify and F_Memory_Read

When any of these button is pressed, then a function, exactly in the same way how it is
done in the standard GangPro-CC Flash Programming software (GUI) is executed. Also buttons
Power ON/OFF, RESET has the same action as related buttons in standard programmer. Refer
to the GangPro-CC Flash Gang Programmer for the CC series devices - User’s Manual for
details of these functions.

In the central part on dialogue screen there are buttons that can call the sequential DLL

functions.
Button Open Target - F_Open_Target_Device();
Button Erase Segment - F_Segment_Erase(....);

Button Blank Check Segm. - F_Sectors_Blank_Check(....);
Button Write Flash Block - F_Copy_Buffer_to_Flash(....);

and - F_Copy_Gang_Buffer_to_Flash(....);
Button Read Flash Block - F_Copy_Flash_to_Gang_Buffer(....)
Button Write XRAM Block - F_Copy_Buffer_to_XRAMA(....);

and - F_Copy_Gang_Buffer_to_XRAM(....);
Button Read XRAM Block - F_Copy_XRAM_to_Gang_Buffer(....);
Button Write direct RAM - F_Copy_Buffer_to_direct_ RAM(....);

and - F_Copy_Gang_Buffer_to_direct_ RAM(....);
Button Read direct RAM - F_Copy_direct_RAM_to_Gang_Buffer(....);
Button Set PC and Run - F_Set_PC_and_RUN(....);
Button Close Target - F_Close_Target_Device();

When a sequential function is called then Open Target (calling F_Open_Target_Device
DLL function) must be pressed first. After that any button calling a sequential function can be
pressed - in any order and as many times as required. On the end of sequential communication
the button Close Traget (calling F_Close_Target_Device DLL function) should be pressed.

In the presented demo software all sequential functions have very small task to perform to
demonstrate how to use the DLL functions. See source code of the DLL-Demo program in the
software package in the ..\Demo-DLL subdirectory for details.

Erase Segment: Erase segment at location 0x1000 (segment size 1 or 2k)

Blank Check Segm. Segment blank check Erase at location 0x1000 to Ox107F

Remote Control Programming User’s Guide PMO025A02 Rev.2 21

Write Flash Block

Read Flash Block

Write XRAM Block

Read XRAM Block

Write 8 bytes to the flash memory at location 0x1020 to 0x1027 - the same
data to all target devices using function
F_Copy_Buffer_to_Flash(0x1020, 8);
and write 8 bytes to the flash memory at location 0x1028 to 0x102F -
unique data to each target devices using function
F_Copy_Gang_Buffer_to_Flash(0x1028, 8);

Following data are written no targets:

Targetno 1->1011121314151617 1819 1A 1B 1C 1D 1E IF
Targetno 2->10111213 14151617 2829 2A 2B 2C 2D 2E 2F
Targetno 3->1011121314 151617 38 39 3A 3B 3C 3D 3E 3F
Targetno 4->101112 1314 1516 17 48 49 4A 4B 4C 4D 4E 4F
Targetno 5->10111213 14151617 58 59 SA 5B 5C 5D SE 5F
Targetno 6->10111213 14151617 68 69 6A 6B 6C 6D 6E 6F

Read 64 bytes from each target devices starting from the flash memory
address at 0x1000. On the report screen only 16 bytes from each target
devices taken from addresses 0x1020 to Ox102F are displayed.

Write 8 bytes to XRAM at location 0xF000 to OxF0O7 - the same data to
all target devices using function
F_Copy_Buffer_to_XRAM(0xF000, 8);
and write 8 bytes to XRAM at location 0xF008 to OxFOOF - unique data to
each target devices using function
F_Copy_Gang_Buffer_to_XRAM(0xF008, 8);

Following data are written no targets:

Target no 1 ->30 31 32 33 34 3536 37 38 39 3A 3B 3C 3D 3E 3F
Target no 2 -> 30 31 32 33 34 35 36 37 48 49 4A 4B 4C 4D 4E 4F
Target no 3 -> 30 31 32 33 34 3536 37 58 59 5A 5B 5C 5D 5E 5F
Target no 4 -> 30 31 32 33 34 3536 37 68 69 6A 6B 6C 6D 6E 6F
Target no 5 ->303132333435363778797A 7B 7C 7D 7E 7F
Target no 6 -> 30 31 32 33 34 3536 37 88 89 8A 8B 8C 8D 8E 8F

Read 16 bytes XRAM starting from address at 0OxFO0O. On the report
screen 16 bytes from each target devices taken from addresses OxF00O to
0xFOOF are displayed

Remote Control Programming User’s Guide PMO025A02 Rev.2 22

Write direct RAM

Read direct RAM

Set PC and Run

Write 8 bytes to direct RAM at location 0x60 to 0x67 - the same data to all
target devices using function
F_Copy_Buffer_to_direct_ RAM(0x60, 8);
and write 8 bytes to direct RAM at location 0x68 to Ox6F - unique data to
each target devices using function
F_Copy_Gang_Buffer_to_direct_ RAM(0x68, 8);

Following data are written no targets:

Targetno 1 ->40414243 44 4546 47 48 49 4A 4B 4C 4D 4E 4F
Target no 2 -> 4041 42 43 44 45 46 47 58 59 5A 5B 5C 5D 5E 5F
Target no 3 -> 4041 42 43 44 45 46 47 68 69 6A 6B 6C 6D 6E 6F
Targetno 4 ->40414243444546477879 7TA 7B 7C 7D 7E 7F
Target no 5 -> 40414243 44 45 46 47 88 89 8A 8B 8C 8D 8E 8F
Target no 6 ->40 41 42 43 44 45 46 47 98 99 9A 9B 9C 9D 9E 9F

Read 16 bytes direct RAM starting from address at 0x60. On the report
screen 16 bytes from each target devices taken from addresses 0x60 to

0x6F are displayed

Small program is written and downloaded to each target devices.
Following program is saved in the XRAM at location stated from 0xF100.

//Downloaded code to RAM - address 0xF100

0xC2, OxAF, // cIr EA (Enable mask)
0OxE4, /lclr A
0x90, 0xF0, 0x00, // mov DPTR, #0xF000
0x79, 0x10, // mov R1, #0x10
loop:
0xFO, /l movx @dptr,A
0x04, /[inc A
0xA3, /l'inc dptr
0xD9,0xFB, /I DINZ R1,loop
//done, fake a breakpoint
0xAS, // DB 0xA5
0x00, /I NOP

Remote Control Programming User’s Guide PMO025A02 Rev.2 23

Written program is modifying contents of the XRAM at locations 0xF000
to OxFOOF. The new XRAM vales should be 0x00, 0x01, 0x02,..... OxOF.
When the Set PC and Run program is pressed, then the contents described
above is downloaded to XRAM and function

Set_PC_and_RUN(1, 0xF100);
is executed. When program is finished, then XRAM at location should be
modified. XRAM contents can be read by pressing the Read XRAM Block
button.
To make a test do following steps (from the beginning):

1. FPA List
. Initialization
. Setup File
. Power from FPA - Enable
. Open Target
. Write XRAM Block
. Read XRAM Block (remember XRAM contents)
. Set PC and RUN
. Read XRAM Block (compare with the contents from point 7).

O 00 1 N D B~ W N

On the right part of the dialogue screen are located buttons with encapsulated functions
like Autoprogram, Erase Flash etc. Encapsulated functions are not requires to call the
F_Open_Target_Device() function. All functions, including “Open..”, “Close...” are build-in
inside the encapsulated functions (see chapter 4 for details).

The second demo program is a small GUI program with limited numbers of functions that
allows to program up to 48 target devices. The programming status report of all units are
displayed. Source code and all related project files are located in the following directory:

C:\Program Files\Elprotronic\CCxx\USB GangPro-CC\API-DLL-Demo\Cpp\Demo-8x6

Program can be activated by selecting the GangProCC-8x6-Demo.exe in the \release
subdirectory, or can be activated from the windows menu:

Start->Program->Elprotronic-Flash Programmer->(CCxx) USB GangPro-CC->API-DLL-8x6-Demo-Cpp

The “FPA-setup.ini” file must be created before. To do that open the “FPA-setup.ini” file and
write the serial numbers of the Gang Programming adapters connected to PC. Only FPA listed in

Remote Control Programming User’s Guide PMO025A02 Rev.2 24

the “FPA-setup.ini” file will be activated. At the beginning the “1. FPA assignment’ button
should be pressed and “FPA-setup.ini” file selected. Software will assign all specified FPAs to
USB ports. If process is finished, then the “2. Initialization”, “3 Setup file”” and “4.0Open

,,-.i. GangProCC Flash Programmer Multi-FPA API-DLL Demo i ' 5!
DLLs and FRA Initislization FPAs selectar Esit |
i~ From File le 2007003
1. FPA assigment | Fie EReRun il Open FPAssetupini | 20070032

2 Initialization | DLL Software 1D | Diizplay Config |

3 SouREl | [E-Frogiam FlesElpotionic\ CCAUSE GangFio COBFIDLL DematC ALl
Responze status

4 Open Code | |I::\F'mglam FileshElpratronichCCxehUSE GangPro-CCWAPI-DLL-DemotC 0003

AT s e e

- Target Devices i~ Functions

e El i e d e 1 s

== futo Program === D D |:| |:| D D

SoC communication initialization. .. QK.
Eiirie daria AW 2V ;[2l Bl &

SoC communication QK. E E |:| |:| D D

Check LOCK Bit

Used Memary Blank checking.. oK. NF 2F B\ MU B B _Check LOCK B |
Flagh programiming . done

Werifying check sum ... QK E E |:| |:| D D

WntngLScrtl(E|ts : . 1%05"3 : AE D s AR iR s Eraze Flash
-------- N t|me = SRC.

PR3 N N N W

==fln Foniam === I 2l sl s s @l Blark Chack |
SoC communication intialization.... QK D D |:| |:| D D

Erasing memon ..o done - =

SoC communication initialization. .. QK. il |5 fi2 |5 i El G4 El B3 |E| B6 |5 \Write Flash

Ok I

Used t ermary Blank checklng QK

Flash programming : done s e r mE e A i e
Werfying check sum . oK “erifu Flazh I
riting Lock bits .. done D D D D D D S e
-------- DOME - [runt|me—1D2sec] g1 [T w2 @z sl s s

Figure 2.2 - Multi-FPA API-DLL demo dialogue screen.

Code” buttons should be used.

Note: Desired Gang Programmers configuration can be created using standard
GangPro-CC (GUI) software. The required configuration setup should be created
(select device type, memory options etc) and saved using option “Save Setup
us..”. Saved configuration file can be used ‘“‘as is” by the Multi-FPA API-DLL
(used in the described demo software above).

Remote Control Programming User’s Guide PMO025A02 Rev.2 25

Now the programmers are ready to download code file to up to 48 target devices. In the “Target
Devices” group box is possible to select up to 48 desired target devices. Programming results
will be displayed in the report screen and in the status icons - each per one target device.

Remote Control Programming User’s Guide PMO025A02 Rev.2 26

3. Getting Started

The Multi-FPA API-DLL software package is the same for the application written under
Visual C++, Visual Basic, LabView etc. When the desired application is created then all files
from the Elprotronic directory

C:\Program Files\Elprotronic\CCxx\USB GangPro-CC\API-DLL

should be copied to the executable destination directory.

It is recommended to start the standard GangPro-CC (GUI) programming software to
verify if the hardware and the drivers setup are correct. Using the GangPro-CC programming
software the fully functional setup that satisfy desired requirements should be created. When it is
done then using the “File->Save Setup as..” option the configuration file should be saved. This
file can be used “as is” in the application uses Multi-FPA API-DLL. Copy and paste the required
configuration to your destination directory, where your application software is installed. It is
recommended to use the demo program and verify if the setup in your PC and destination
directory are done correctly. To do that copy the executable file

GangProCC-DLL-DemoCpp.exe

from location

C:\Program Files\Elprotronic\CCxx\USB GangPro-CC\API-DLL-Demo\Cpp\Demo-1\release

to your destination location where your application software is installed. Run the demo program.
Follow instruction described in chapter 2 how to use the demo program.

3.1 Example with single FPA API DLL

The API-DLL always uses two API-DLL - selector DLL and AOI-DLL. When one FLA
is used only, then selector DLL always sould select the first FPA. Also it is recommended to use
the first detected FPA, since only one FPA is typically connected to PC. The application software
can be simplified in this case. All instructions related to single FPA are detailed described in the
chapters 4.2, 4.3 and 4.4. Instructions specific to Multi-FPA features described in the chapter 4.1.

Initialization opening procedure for the USB-FPA can be as follows:

Remote Control Programming User’s Guide PMO025A02 Rev.2 27

F_OpenInstancesAndFPAs(“*# *”); // DLL and FPA (one only) initialization
F_Set_FPA_index(1); // select FPA 1 for
F_Initialization(); // init FPA

Below is an example of the simplified (without error handling procedures) application

program written in C++ that allows to initialize the FPA, and run an autoprogram with the same
features like an autoprogram in the standard GangPro-CC (GUI) software.

1. Download data to target device

F_OpenInstancesAndFPAs (“*# *”); // DLL and FPA initialization
F_Set_FPA_index(1); // select FPA-1
F_Initialization(); // init FPA
F_ReadConfigFile(filename); // read configuration data and save
// to API-DLL
F_ReadCodeFile(format, filename); // read code data and save to DLL
do

{
status = F_AutoProgram(1);
//start autoprogra
if (status != TRUE)
{
status = F_LastStatus(1);

F_CloselInstances();

3.2 Example with Multi-FPA API DLL

The code example described below uses Multi-FPA API-DLL. The Multi-FPA API-DLL
is a shell that allows to transfer incoming instructions from the application software to desired
FPA. All instructions related to single FPA are detailed described in the chapters 4.2, 4.3 and 4.4.
Instructions specific to Multi-FPA features described in the chapter 4.1.

Initialization opening procedure for the USB-FPA can be as follows:
F_OpenInstancesAndFPAs(FPAs-setup.ini); // DLL and FPA initialization
F_Set_FPA_index(ALL_ACTIVE_FPA); // select all FPA’s
F_Initialization(); // init all FPA’s

In the example above number of the opened USB-FPAs are specified in the ‘FPAs-setup.ini’

Remote Control Programming User’s Guide PMO025A02 Rev.2 28

Below is an example of the simplified (without error handling procedures) application
program written in C++ that allows to initialize all dlls and FPA, and run an autoprogram with
the same features like an autoprogram in the standard GangPro-CC (GUI) software.

1. Download data to all target devices (uses USB-FPAs)

F_OpenInstancesAndFPAs(FPAs-setup.ini); // DLL and FPA initialization

F_Set_FPA_index(ALL_ACTIVE_FPA); // select all FPA's
F_Initialization(); // init all FPA'’s
F_ReadConfigFile(filename); // read configuration data and save
// to all API-DLLs
F_ReadCodeFile(format, filename); // read code data and save to all
// API-DLLs
do
{
status = F_AutoProgram(1);
//start autoprogram-to program all targets simultaneously with
//the same downloaded data to all target devices.
if (status != TRUE)
{
if (status == FPA_UNMACHED_RESULTS)
{
for (n=1; n<=MAX_FPA_ INDEX; n++) status[n] = = F_LastStatus(n);
}
else

F_CloselInstances();

Note, that all single API-DLL are independent from each others and it is not required that all
data and configuration should be the same for each API-DLLs (each FPAs, or target devices) .
For example - code data downloaded to the target devices connected to first FPA can be the same
(but it is not required) as code data downloaded to the target devices connected to second FPA
etc. In the example below the downloaded code to target devices are not the same .

2. Download independent data to target devices (uses USB-FPAs)

F_OpenInstancesAndFPAs(FPAs-setup.ini); // DLL and FPA initialization
F_Set_FPA_index(ALL_ACTIVE_FPA); // select all FPA’s
F_Initialization(); // init all FPA'’s

Remote Control Programming User’s Guide PMO025A02 Rev.2 29

F_Set_FPA_index(ALL_ACTIVE_FPA); // select all FPA’s

F_ReadConfigFile(filename); // read configuration data and save
// to all API-DLLs

F_Set_FPA_index(1); // select FPA 1

F_ReadCodeFile(format, filenamel); // read code data and save to
// API-DLL-1

F_Set_FPA_index(2); // select FPA 2

F_ReadCodeFile(format, filename2); // read code data and save to

// API-DLL-2

F_Set FPA_index(7); // select FPA 7
F_ReadCodeFile(format, filename7); // read code data and save to
// API-DLL-7
F_Set_FPA_index(8); // select FPA 8
F_ReadCodeFile(8, format, filename8); // read code data and save to
// API-DLL-8
F_Set_FPA_index(ALL_ACTIVE_FPA); // select all FPA’s
do
{
status = F_AutoProgram(1);
//start autoprogram - to program all targets simultaneously

//with the independent downloaded data to all target devices.

if (status != TRUE)

{

if (status == FPA_UNMACHED_RESULTS)
{
for (n=1; n<=MAX_FPA_INDEX; n++) status[n] = = F_LastStatus(n);
}

else

F_CloseInstances();

Remote Control Programming User’s Guide PMO025A02 Rev.2 30

4. List of the DLL instructions

All DLL instructions are divided to four groups - related to Multi-FPA selector, single
FPA generic, single FPA encapsulated and single FPA sequential instructions. Multi-FPA
specific instructions are related to the Multi-FPA DLL only. Generic instructions are related to
initialization programmer process, while encapsulated and sequential instructions are related to
target device’s function. Encapsulated and sequential instructions can write, read, and erase
contents of the target device’s flash memory.

Multi-FPA specific instructions are related to load and release the single-FPA dlls,
selection of the transparent path and sequential/simultaneous instructions transfer management.
All other instructions are related to single FPAs.

Generic instructions are related to initialization programmer process, configuration setup
and data preparation, Vcc and Reset to the target device. Generic instructions should be called
first, before encapsulated and sequential instruction.

Encapsulated instructions are fully independent executable instructions providing access
to the target device. Encapsulated instructions can be called at any time and in any order. When
called then all initialization communication with the target device is starting first, after that
requested function is executed and at the end communication with the target device is terminated
and target device is released from the programming adapter.

The encapsulated functions should be mainly used for programming target devices. These
functions perform most tasks required during programming in an easy to use format. These
functions use data provided in Code Files, which should be loaded before the encapsulated
functions are used. To augment the functionality of the encapsulated functions, sequential
functions can be executed immediately after to complete the programming process.

Sequential instructions allow access to the target device in a step-by-step fashion. For
example, a typical sequence of instructions used to read data from the target device would be to
open the target device, then read data and then close the target device. Sequential instruction
have access to the target device only when communication between target device and
programming adapter is initialized. This can be done when Open Target Device instruction is
called. When communication is established, then any number of sequential instruction can be
called. When the process is finished, then at the end Close Target Device instruction should be
called. When communication is terminated, then sequential instructions can not be executed.

Note: Inputs / outputs has been defined as INP_X defined as 4 bytes long (see header file)

Remote Control Programming User’s Guide PMO025A02 Rev.2 31

#define INP_X _int32
Make sure that an application using the DLL file has the same length of desired data.

The DLL instructions have the following convention related to the target device number
and target device mask set/result (see also figure 1.4 and 1.5).

Table 4.1
DD connector pin # Debug Data # Target device # Target Device MASK

1 1 1 0x01 (01h)

2 2 0x02 (02h)
10 3 3 0x04 (04h)
12 4 4 0x08 (08h)
14 5 5 0x10 (10h)
13 6 6 0x20 (20h)

Important information:
All target devices connected to the Gang Programmer should be the same type. Do
not mixed the different type of the target devices.

Remote Control Programming User’s Guide PMO025A02 Rev.2 32

4.1 Multi-F PA instructions

The Multi-FPA API-DLL instructions are related to Multi-FPA selector only. These
instructions allows to initialize all single applications dlls and select the instruction patch
between application software and desired FPA and sequential/simultaneous instructions transfer
management Up to eight independent FPAs can be remotely controlled from the application
software. All instructions from application software can be transferred to one selected FPA or to
all FPAs at once. That feature allows to increase programming speed up to eight times and also
allows to have individual access to any FPA is required.

F_Trace_ON
F Trace ON - This function activate the tracing.
Syntax:

void MSPPRG_API F_Trace_ON(void);

The F_Trace_ON() opens the DLLtrace.txt file located in the current directory and records all
API-DLL instructions called from the application software. This feature is useful for debugging.
When debugging is not required then tracing should be disabled. Communication history
recorded in the in the last session can be viewed in the DLLtrace.txt located in the directory
where the API-DLL file is located. When the new session is established then the file
DLLtrace.txt is erased and new trace history is recorded.

Note: Tracing is slowing the time execution, because all information passed from application
software to API-DLL are recorded in the dlltrace.txt file.

F_Trace OFF
F_Trace OFF - Disable tracing, See F_Trace_ON for details.
Syntax:

void MSPPRG_API F_Trace_OFF(void);

F_Openlnstances

Remote Control Programming User’s Guide PMO025A02 Rev.2 33

F_OpenlInstances - API-DLL initialization in the PC.
Instruction must be called first - before all other instruction. Instead this function the
F_OpenlnstancesAndFPAs can be used.

Important: Itis not recommended to use this function. Function used only for compatible with
the old software. Use the F_OpenlInstancesAndFPAs instead.
Do not use the F_Openlnstances or F_Check_FPA_access after using the
F_OpenlnstancesAndFPAs. The F_OpenlnstancesAndFPAs is assigning the FPAs to
USB ports and it is not recommended to reassign once again the USB port using the
F_Check_FPA _access function. To check the communication activity with FPA use the
F_Get_FPA_SN function that allows to check te communication with the FPA adapter
without modifying the USB ports assignment.

Syntax:
INT X MSPPRG_API F_OpenlInstances (BYTE no);

Parameters:
no -> number of the single API-DLL to be open
no -> 1 to MAX_USB_DEV_NUMBER
where MAX_USB_DEV_NUMBER = 16

Return value:
number of opened instances

F_Closelnstances

F_Closelnstances - Close all active API-DLLs and free system memory.
Syntax:

INT X MSPPRG_API F_CloselInstances (void);
Parameters:

void no -> 1 to MAX_USB_DEV_NUMBER
where MAX_ USB_DEV_NUMBER = 16

Return value:
TRUE

F_OpenlnstancesAndFPAs, F_Openlnstances_AndFPAs

F_OpenlnstancesAndFPAs - API-DLL initialization in the PC and FPA scan and

Remote Control Programming User’s Guide PMO025A02 Rev.2 34

or F_Openlnstances_AndFPAs assignment to desired USB port according to contents of the
FPA’s list specified in the string or FPA’s configuration file.

Instruction must be called first - before all other instruction. Instead this function the
F_Openlnstances can be used. Function can be used only when the USB FPA are used. When the
USB-FPA is used, then the function F_OpenlInstancesAndFPAs is recommended in the initialization
process. Function is very convenient - automatically is opening the number of the desired API-DLL
and assigning the desired FPA to available USB ports. Regardless of the USB port open sequence
and connection of the FPA to USB ports, the F_OpenlnstancesAndFPAs instruction is reading the
FPA’s list, scanning all available FPAs connected to any USB ports and assigning the indexes to all
FPAs according to contents of the FPA list (from string or configuartion file). All FPAs not listed
in the FPA configuration file and connected to USB ports are ignored.

Important: Donotusethe F_Check_FPA_access after using the F_OpenInstancesAndFPAs.
The F_OpenlInstancesAndFPAs is assigning the FPAs to USB ports and it is not
recommended to reassign once again the USB port using the F_Check_FPA_access
function. To check the communication activity with FPA use the F_Get_FPA_SN
function that allows to check te communication with the FPA adapter without
modifying the USB ports assignment.

Syntax:
INT X MSPPRG_API F_OpenInstancesAndFPAs(char * List);
INT X MSPPRG_API F_OpenInstances_AndFPAs(CString List);
Parameters:

1. When the first two characters in the List string are *#, then string reminding characters

contains list of desired FPAs serial numbers assigned to FPA-1, -2, ...-n indexes, eg.
“x# 20060123, 20060234, 20060287"

2. When the first two characters in the List string are not *#, then string contains file name

or full path of the file with list of the FPA’s serial numbers, eg.
“C:\Program Files\Elprotronic\FPAs—-setup.ini”

Return value:
number of opened instances

1. The FPA list in the string:
String -> “*# sN1, SN2, SN3, SN4, SN5...”
Where the

Remote Control Programming User’s Guide PMO025A02 Rev.2 35

SN1- FPA’s serial number that should be assigned to FPA-1 index
SN2- FPA’s serial number that should be assigned to FPA-2 index
etc.
As a delimiter the comma °,” or white space ‘ ’ can be used.
Example:
“*# 20060123, 0, 20060346, 20060222, 20060245"
or
“*4# 20060123 0 20060346 20060222 20060245"

In example above the FPAs will be assigned as follows:
FPA-1 20060123
FPA-2 O //empty — FPA is not assigned
FPA-3 20060346
FPA-4 20060222
FPA-5 20060245

In the FPA list can be specified ONE adapter with any serial number when the character ‘*’ is used
instead the FPA’s serial number. Only one ‘*’ character can be specified in the FPA list and must
be located on the end of valid SN list. All other serial numbers specified after ‘*” will be ignored.
This option allows to specify any FPA when the only one adapter is used eg.
g e
FPA-1 -> Any FPA is one adapter is connected, or the first detected adapter, if more then one adapters are
connected.
or if more then one adapter is used
“*# 20060123 *"
FPA-1 20060123

FPA-2 - first detected adapter (excluding already assigned adapters), if
more adapters are connected.

When the “*’ is inside the FPA list, eg.
k200060123 * 20060137 20060166"

then the last two FPA’s SN will be ignored
FPA-1 20060123
FPA-2 - first detected adapter (excluding already assigned adapters), if
more adapters are connected.
FPA-3 - not assigned

Initialization example:

1. F_OpenInstances_AndFPAs(“*# *”); // only one FPA - any SN
or

2. F_OpenInstances_AndFPAs(snlist); // hardcoded SN list

or

3. // scanned available FPA’s SN list

Remote Control Programming User’s Guide PMO025A02 Rev.2 36

long SN[MAX_USB_DEV_NUMBER+1], Snr [MAX_USB_DEV_NUMBER+1];
CString snlist;
char * buf[20];

F_OpenInstances(1); // DLL initialization - one instance
F_Set_FPA_index(1); // select access to the first instance
n=20 //number of detected FPAs

for(k=1; k<=MAX_USB_DEV_NUMBER ; k++)
{
SN[k] = F_Check_FPA_access (k) ;
if (SN[k] > 20000000) n++;
}

F_CloselInstances();

// write your own procedure
// remap available FPAs SN to desired FPAs order from SN[k] to Snr[p]

snlist = “*#";

for(k=1; k<=n ; k++)

{
sprintf(buf, “ %8.81i”, Snrlk]);
snlist += buf;

}

F_OpenInstances_AndFPAs(snlist);

2.The FPA list in the configuration file:
String -> “C:\Program Files\Elprotronic\FPAs-setup.ini”

Example of the FPA configuration file:

; —-> semicolon — comment

; Syntax of the FPAs configuration specified

; FPA-x Serial Number

; where FPA-x can be FPA-1, FPA-2, FPA-3 up to FPA-8

; e.g

FPA-1 20050116

FPA-3 20050199

FPA-5 20050198

FPA-6 20050205

; FPA-x can be listed in any order and can contain gaps,

; like above without FPA-2, FPA-4

; When list like above is used, then following fpa can be valid
; fpa -> 1,3,5,6

; NotePad editor can be used to create the FPA configuration file.

Remote Control Programming User’s Guide PMO025A02 Rev.2 37

When the ‘*’ is used instead FPA’s SN, then any FPA will be accepted. The ‘*’ can be used only
once and on the end of the FPA’s list eg.

FPA-1 20050116
FPA-3 20050199

FPA-5 *
or
FPA-1 *

when only one adapter (any adapter) is used.

Example:

F_OpenInstancesAndFPAs (FPAs-setup.ini);

//DLL startup and FPA assignment
F_Set_FPA_index (ALL_ACTIVE_FPA);

//select all available FPAs
F_Initialization();

//init all FPAs
F_ReadConfigFile(filename);

//download the same configuration to all DLLs.
F_ReadCodeFile(format, filename);

//download the same code file to all DLLs.

do
{
status = AutoProgram(l);
//start autoprogram to all FPAs simultaneously.
if(status != TRUE)
{
if(status == FPA_UNMATCHED_ RESULTS)

{

// service software when results from FPAs are not the same

else

} while (1) ;
F_CloselInstances () ;
// release DLLs from memory

F_API_DLL_Directory

Remote Control Programming User’s Guide PMO025A02 Rev.2 38

F_API_DLL_Directory - The DLL directory location.
VALID FPA index - irrelevant - the same directory location for all DLLs.

The F_API_DLL_Directory command can specify the directory path where the DLLs are
located. This command is not mandatory and usually is not required. But in some application
software (like in the LabVIEW) the default location of the DLLs is not transferred to the DLL. In
this case the related files with DLLs like MSPlist.ini located in the same directory where the
DLLs are located can not be find. To avoid this problem the full path of the directory where the
DLLs are located can be specified. The F_API _DLL_Directory must be used before
F_Initialization() function.

Syntax:

MSPPRG_API void F_API_DLL Directory(Cstring APIDLLpath);
or MSPPRG_API void F_APIDLL Directory(char* APIDLLpath);
Example

F_API_DLL_Directory(“C:\\Program Files\\Test\\LabVIEW”);

// directory where the API-DLLs and MSPlist.ini are located

// C:\Program Files\Test\LabVIEW
If(F_Initialization() != TRUE) //required API-D11 - initialization
{

// Initialization error

}

F Set FPA_ index

F_Set_FPA_index - Select desired FPA index (desired DLL instance)
VALID FPA index -(1to8) or0 (ALL FPAs).
Syntax:

INT_X MSPPRG_API F_Set_ FPA index (BYTE fpa);
Parameters:

fpa —> 1 to MAX_FPA_INDEX where MAX_FPA_INDEX = 8

or 0 -> ALL_ACTIVE_FPA

note: instead of ‘0' value it can be used global defined
ALL_ACTIVE_FPA that is defined as
#define ALL_ACTIVE_FPA 0

in the header file

Remote Control Programming User’s Guide PMO025A02 Rev.2 39

Return value:

TRUE - if used fpa index is wvalid

FPA_INVALID_NO - if used fpa index is not activated or out of range
note: FPA_INVALID NO -> -2 (minus 2)

F_Get_FPA_index

F_Get_FPA_index - Get current FPA index

Syntax:
BYTE MSPPRG_API F_Get_FPA_index (void);

Return value:
current FPA index

F _Disable FPA_ index

F_Disable_ FPA_index - Disable desired FPA index (desired DLL instance)
VALID FPA index -(1to8)

Function allows to disable communication with selected FPA adapter. From application point of
view, all responses will be the same as from the not active FPA. Communication with target
devices connected to selected FPA will be stopped. When the F_Set_FPA_index(0) will be used,
then selected FPA will be ignored. Result will not be presented in the Status results (Status and
F_LastStatus(..)).

Syntax:
void MSPPRG_API F_Disable FPA_index (BYTE fpa);
Parameters:
fpa -> 1 to MAX_FPA_INDEX where MAX_FPA_INDEX = 8

F _Enable FPA_index

F_Enable FPA_index - Enable desired FPA index (desired DLL instance)
VALID FPA index -(1to8)

Remote Control Programming User’s Guide PMO025A02 Rev.2 40

Function allows to enable communication with selected FPA adapter if the mentioned FPA has
been disabled using the function F_Disable_FPA_index(...). By default, all FPAs are enabled.

Syntax:
void MSPPRG_API F_Enable FPA_index (BYTE fpa);

Parameters:
fpa -> 1 to MAX_FPA_INDEX where MAX_FPA_INDEX = 8

F_LastStatus

F_LastStatus - Get current FPA index
VALID FPA index -(1to8)

Syntax:
INT_X MSPPRG_API F_LastStatus (BYTE fpa);

Parameters:
fpa - FPA index of the desired status
fpa index -> 1..8

Return value:
Last status from the desired FPAs

All F_xxx functions returns the same parameters (status) as the original API_DLL is returning.
When function is transferred to all API-DLLs (when the fpa=0) then returned parameter (status)
is the same as the returned value from the API-DLLs when the ALL returned values ARE THE

SAME. If not, then returned value is
FPA_UNMATCHED_RESULTS

(value of the FPA_UNMATCHED_RESULTS is minus 1).

To get the returned values from each FPAs, use the

For(n=1; n<=8; n++) status[n] = F_LastStatus(n);
where n -> desired FPA index
and get the last status data from FPA-1, 2, .. up to .8

F_Multi_DLLTypeVer

Remote Control Programming User’s Guide PMO025A02 Rev.2 41

F_Multi_DLLTypeVer function returns integer number with DLL ID and software revision

version.
Syntax:
MSPPRG_API INT_X F_Multi_ DLLTypeVer(void);

Return value:
VALUE = (DLL ID) | (OxOFFF & Version)
DLL ID = 0x1000 - Single DLL for the Parallel Port MSP430-FPA
DLL ID = 0x2000 - Single DLL for the USB MSP430-FPA (FlashPro430)
DLL ID = 0x3000 - Single API-DLL for the GangPro430
DLL ID = 0x4000 - Single API-DLL for the FlashPro-CC
DLL ID = 0x5000 - Single API-DLL for the GangPro-CC
DLL ID = 0x6000 — Multi-FPA API-DLL for the FlashPro430
DLL ID = 0x7000 - Multi-FPA API-DLL for the GangPro430
DLL ID = 0x8000 — Multi-FPA API-DLL for the FlashPro-CC
DLL ID = 0x9000 — Multi-FPA API-DLL for the GangPro-CC
Version = (0xOFFF & VALUE)

F_Get_FPA_SN

F_Get_FPA_SN - Get FPAs Serial number assigned to selected FPA-index (selected

DLL instance number).
Syntax:
INT X MSPPRG_API F_Get_FPA_SN (BYTE fpa);
Parameters:

fpa - FPA index of the desired status
fpa index -> 1..8

Return value:

Serial number of the selected FPA

or FPA_INVALID_NO - if used fpa index is not activated or out of range.
note: FPA_INVALID NO -> -2 (minus 2)

Remote Control Programming User’s Guide PMO025A02 Rev.2 42

4.2 Generic instructions

Generic instructions are related to initialization programmer process, configuration setup and
preparation data, turning ON and OFF target’s DC and RESET target device. Any communication
with the target device is provided when any of the generic instruction is executed. Generic
instructions should be called before encapsulated and sequential instruction.

F _Check FPA_access

F_Check_FPA_access - Check available Flash Programming Adapter connected to specified
USB drivers (USB driver index from 1 to 16)

Important: Itis not recommended to use this function. Function used only for compatible with
the old software. Use the F_OpenlInstancesAndFPAs instead.
Do not use the F_Openlnstances or F_Check_FPA_access after using the
F_OpenlnstancesAndFPAs. The F_OpenlnstancesAndFPAs is assigning the FPAs to
USB ports and it is not recommended to reassign once again the USB port using the
F_Check_FPA _access function. To check the communication activity with FPA use the
F_Get_FPA_SN function that allows to check te communication with the FPA adapter
without modifying the USB ports assignment.

VALID FPA index (DLL instance number) - (1to 8)

F_Check_FPA_access should be called as a first function when the *.dll is activated. Function
returns serial number of the detected flash programming adapter, or zero, if programming adapter
has not been detected with selected USB driver. Up to 16 USB drivers can be scanned.

To make a Multi-FPA software back compatible, the F_Check_FPA_access procedure is calling
the function F_Openlnstances if none of the instances has not been activated before. That
allows to use old application software without calling the new type of Multi-FPA functions.

Syntax:
MSPPRG_API INT X F_Check_FPA_ access (INT X USB_index);

Parameters:
Index: USB driver index from 1 to MAX_ USB_DEV_NUMBER
where MAX_ USB_DEV_NUMBER = 16

Return value:

Remote Control Programming User’s Guide PMO025A02 Rev.2 43

0 - FALSE
>0 - Detected FPA’s Serial Number

Example:

long SN[MAX_ USB_DEV_NUMBER+1];

F_OpenInstances(1); // DLL initialization - one instance
F_Set_FPA_index(1); // select access to the first instance
n = 0; //no of detected FPAs

for(k=1; k<=MAX_USB_DEV_NUMBER ; k++)
{
SN[k] = F_Check_FPA_access (k) ;
if (SN[k] > 0) n++;
}

F_CloseInstances(); // DLL initialization - one instance

’ instances - one per FPA

F_OpenInstances(n); // Open ‘n
// Find desired FPAs SN and assign the FPAs serial number every time to the
same // FPA-index.
// For example 1if the

// SN[1l]= 20060123
// SN[2]= 20060147
// SN[3]= O - adapter not present
// SN[4]= 20060135

// and desired assignment

// FPA-1 20060123

// FPA-2 20060135

// FPA-3 20060147

// then following sequence instructions can be used

F_Set_FPA_index(1) // select access to the first instance

F_Check_FPA_access(1); //assign FPA SN[1] = 20060123 to FPA-1
F_Set_FPA_index(2); // select access to the second instance
F_Check_FPA_access(4); //assign FPA SN[4] = 20060135 to FPA-2
F_Set_FPA_index(3); // select access to the third instance
F_Check_FPA_access(2); //assign FPA SN[2] = 20060147 to FPA-3

F_Set_FPA_index(ALL_ACTIVE_FPA); // select all active instances
F_Initialization() // All FPAs initialization

F_DLLTypeVer

Remote Control Programming User’s Guide PMO025A02 Rev.2 44

F_DLLTypeVer - Get information about DLL software type and software revision.
VALID FPA index -(1t08)

F_DLLTypeVer function returns integer number with DLL ID and software revision version
and copying text message to report message buffer about DLL ID and software revision. Text
content can downloaded using one of the following functions

F_GetReportMessageChar(index)
or F_ReportMessage(text)

Syntax:
MSPPRG_API INT X F_DLLTypeVer(void);

Return value:

VALUE = (DLL ID) | (OxOFFF & Version)
DLL ID = 0x1000 - Single DLL for the Parallel Port MSP430-FPA
DLL ID = 0x2000 - Single DLL for the USB MSP430-FPA (FlashPro430)
DLL ID = 0x3000 - Single API-DLL for the GangPro430
DLL ID = 0x4000 - Single API-DLL for the FlashPro-CC
DLL ID = 0x5000 - Single API-DLL for the GangPro-CC
DLL ID = 0x6000 — Multi-FPA API-DLL for the FlashPro430
DLL ID = 0x7000 - Multi-FPA API-DLL for the GangPro430
DLL ID = 0x8000 — Multi-FPA API-DLL for the FlashPro-CC
DLL ID = 0x9000 — Multi-FPA API-DLL for the GangPro-CC
Version = (0xOFFF & VALUE)
Example:
INT_X id;

id = F_DLLTypeVer();
Disp_report_message () ;
//see F_ReportMessage or F_GetReportMessage for details

F Initialization

F_Initialization - Programmer initialization.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Remote Control Programming User’s Guide PMO025A02 Rev.2 45

F_Initialization function should be called after the communication with the FPA adapter is
established. To make a Multi-FPA software back compatible, the F_Initialization procedure is
calling the function F_OpenlInstances if none of the instances has not been activated before.
That allows to use old application software without calling the new type of Multi-FPA functions.
In this case the F_Check_FPA_access function can be used to activate communication between
PC and Programming Adapter. When the F_Check_FPA _access is not called then by default
the USB driver number “1" is selected.
When the F_Initialization is called then:

- all internal data is cleared or set to the default value,

- initial configuration is downloaded from the config.ini file,

- USB driver is initialized if has not been initialized before (for the USB version

programmer) or Parallel Port becomes open (for the parallel port version programmer).

Programming adapter must be connected to the USB or Parallel Port to establish communication
between PC and programming adapter. Otherwise the F_Initialization will return FALSE result.

Syntax:
MSPPRG_API INT X F_Initialization(void);

Return value:

0 - FALSE
1 — TRUE
4 - Programming adapter not detected.
Example:
F_API_DLL_Directory(“..... ”) // optional - see F_API_DLL_Directory()
If(F_Initialization() != TRUE) //required API-D11 - initialization

{

// Initialization error

F Close All

F_Close_All - Close communication with the programming adapter and release
PC memory.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Remote Control Programming User’s Guide PMO025A02 Rev.2 46

F_Close_All function should be called as the last one before *.dll is closed. When the
F_Close_All is called then communication port becomes closed and all internal dynamic data
will be released from the memory. To activate communication with the programmer when the
function F_Close_All has been used the F_Initialization function must be called first.

Syntax:
MSPPRG_API INT X F_Close_ All(void);

Return value:

0 - FALSE
1 - TRUE
Example:
F_Initialization(); //required API-D11 - initialization

F_GetSetup

F_GetSetup - Get configuration setup from the programmer.
VALID FPA index -(1to8)
See F_ConfigSetup description for more details.

Syntax:
MSPPRG_API INT X F_GetSetup(CFG_BLOCK *config);

Return value:
0 - FALSE
1 - TRUE

F_ConfigSetup

F_ConfigSetup - Setup programmer’s configuration.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Remote Control Programming User’s Guide PMO025A02 Rev.2 47

The F_ConfigSetup can modify configuration of the programmer. When the
F_ConfigSetup is called, then the structure data block is transferred from the software application
to the programmer software. Current programmer setup can be read using function setup
F_GetSetup. When data block is taken from the programmer, then part or all of the configuration
data can be modified and returned to programmer using F_ConfigSetup function. Configuration
data structure and available data for all listed items in this structure are defined below. Listed
name and indexes in the [] brackets are related to the F_SetConfig and F_GetConfig
instructions

See F_Set_Config(....) for detailed description of the all configuration data contents.

typedef struct

{
INT_X DevicelIndex;
INT_X PowerTargetEn;
INT_X CommSpeedIndex;
INT_X ResetTimelIndex;
INT_X CustomResetPulseTime;
INT_X CustomResetIdleTime;
INT_X RstVccOffTime;
INT_X ApplicationStartIndex;
INT_X ApplicationRunTime;
INT_X FlashEraseModeIndex;
INT_X FlashReadModelIndex;
INT_X FlashLockBits;
INT_X UnlockDebugBit;
INT_X LockBitsEn;
INT_X VerifyModeIndex;
INT_X IEEEAddeModelIndex;
INT_X ManIEEEAddeModeIndex;
INT_X BeepOKEn;
INT_X VcclIndex;
INT_X TargetEnMask;
INT_X RetainDataEn;
INT_X RetainDataStartAddr;
INT_X RetainDataStopAddr;
INT_X EraseDefBlocklEn;
INT_X EraseDefBlocklStartAddr;
INT_X EraseDefBlocklStopAddr;
INT_X EraseDefBlock2En;
INT_X EraseDefBlock2StartAddr;
INT_X EraseDefBlock2StopAddr;
INT_X EraseDefBlock3En;
INT_X EraseDefBlock3StartAddr;
INT_X EraseDefBlock3StopAddr;
INT_X EraseDefBlock4En;
INT_X EraseDefBlock4StartAddr;

Remote Control Programming User’s Guide PMO025A02 Rev.2 48

INT_X EraseDefBlock4StopAddr;
INT_X ReadDefBlocklEn;

INT_X ReadDefBlocklStartAddr;
INT_X ReadDefBlocklStopAddr;
INT_X ReadDefBlock2En;

INT_X ReadDefBlock2StartAddr;
INT_X ReadDefBlock2StopAddr;
INT_X ReadDefBlock3En;

INT_X ReadDefBlock3StartAddr;
INT_X ReadDefBlock3StopAddr;
INT_X ReadDefBlock4En;

INT_X ReadDefBlock4StartAddr;
INT_X ReadDefBlock4StopAddr;
INT_X Sparel;

INT_X Spare2;

INT_X Spare3;

INT_X Spare4;

INT_X Spareb;

INT_X Spareb6t;

INT_X Spare’;

INT_X SpareS§;

INT_X Spare9;

INT_X SparelO;

INT_X Sparell;

INT_X Sparel?2;

INT_X Sparel3;

INT_X Spareld;

INT_X Sparelb;

INT_X Sparel6;

} CFG_BLOCK;

Syntax:
MSPPRG_API INT_X F_ConfigSetup(CFG_BLOCK config);

Return value:

0 - FALSE
1 - TRUE
Example:

Example below shows the method of modification of the programmers configuration setup. First
the current setup from the programmer is uploaded to the application, after that some of the
parameters have been modified and at the end the modified setup is returned back to the
programmer.

CFG_BLOCK config; //programmer’s configuration data

Remote Control Programming User’s Guide PMO025A02 Rev.2 49

F_GetSetup(&config);
//API-DLL - get configuration from the programmer
config.CommSpeedIndex = SPEED_3MB_INDEX;
//select JTAG interface
config.FlashEraseModeIndex = ERASE_ALL_MEM_INDEX;
//select all memory erase option
F_ConfigSetup(config);
//API-DLL - setup configuration in the programmer

F_SetConfig

F_SetConfig - Setup one item of the programmer’s configuration.
VALID FPA index -(1to8) or(0 (ALL FPAs) executed sequentially.

Similar to the F_ConfigSetup, but only one selected item from the cFG_BLOCK structure
is modified.

Syntax:
MSPPRG_API INT X F_SetConfig(INT X index, INT_X data);

Return value:

0 - FALSE
1 - TRUE
Example:

F_SetConfig(CFG_MICROCONTROLLER, config.uProcIndex);
or
F_SetConfig(CFG_MICROCONTROLLER, 7);

Index’s list

CFG_MICROCONTROLLER
CFG_POWERTARGETEN
CFG_COMM_SPEED_INDEX
CFG_RESET_TIME_INDEX
CFG_RESET_PULSE_TIME
CFG_RESET_IDLE_TIME
CFG_RSTVCC_OFF_TIME
CFG_APPLSTARTEN
CFG_APPL_RUN_TIME
CFG_FLASHERASEMODE

H O 0 J O U & W N

Remote Control Programming User’s Guide PMO025A02 Rev.2 50

CFG_FLASHREADMODE 11

CFG_FLASH_LOCKBIT 12
CFG_UNLOCK_DEBUG_BIT 13
CFG_LOCK_BITS_EN 14
CFG_VERIFYMODE 15
CFG_IEEE_ADDR_MODE 16
CFG_MAN_IEEE_ADDR_MODE 17
CFG_BEEP_OK_EN 18
CFG_VCCINDEX 19
CFG_TARGET_EN_MASK 20
CFG_RETAIN_DEF_DATA_EN 21
CFG_RETAIN_START_ADDR 22
CFG_RETAIN_STOP_ADDR 23
CFG_ERASE_DEFBLOCK1_EN 24
CFG_ERASE1_START_ADDR 25
CFG_ERASE1_STOP_ADDR 26
CFG_ERASE_DEFBLOCK2_EN 27
CFG_ERASE2_START_ADDR 28
CFG_ERASE2_STOP_ADDR 29
CFG_ERASE_DEFBLOCK3_EN 30
CFG_ERASE3_START_ADDR 31
CFG_ERASE3_STOP_ADDR 32
CFG_ERASE_DEFBLOCK4_EN 33
CFG_ERASE4_START_ADDR 34
CFG_ERASE4_STOP_ADDR 35
CFG_READ_DEFBLOCK1_EN 36
CFG_READ1_START_ADDR 37
CFG_READ1_STOP_ADDR 38
CFG_READ_DEFBLOCK2_EN 39
CFG_READ2_START_ADDR 40
CFG_READ2_STOP_ADDR 41
CFG_READ_DEFBLOCK3_EN 42
CFG_READ3_START_ADDR 43
CFG_READ3_STOP_ADDR 44
CFG_READ_DEFBLOCK4_EN 45
CFG_READ4_START_ADDR 46
CFG_READ4_STOP_ADDR 47
CFG_IEEE_ADDR_LOCATION 48
CFG_IEEE_ADDR_LOC_MODE 49
CFG_IEEE_ADDR_LSB_FIRST 50
/) ————————— CONFIG_BLOCK - definitions —-——-—
// CFG_MICROCONTROLLER 1

CC_ANY 0

Remote Control Programming User’s Guide PMO025A02 Rev.2

// 1 — CCl110F8
// 2 - CCl110F16
// 3 - CCl110F32
// 4 — CC2430F32
// 5 - CC2430F64
// 6 — CC2430F128
// 7 — CC2431F32
// 8 - CC2431F64
// 9 - CC2431F128

// 10 — CC2510F8
// 11 — CC2510F16
// 12 — CC2510F32
// 13 — CC2511F8
// 14 — CC2511F16
// 15 - CC2511F32

// CFG_POWERTARGETEN 2
// 0 —> PowerTarget Disable
// 1 -> PowerTarget Enable

// CFG_COMM_SPEED_INDEX 3
SPEED_3MB_ INDEX 1
SPEED_1MB_INDEX 2

// CFG_RESET_TIME_INDEX
RESET_10MS_INDEX
RESET_100MS_INDEX
RESET_200MS_INDEX
RESET_500MS_INDEX
RESET_CUSTOM_INDEX
RESET_TOGGLE_VCC_INDEX

(2T SOOI \ O I @ TN

// CFG_RESET_PULSE_TIME 5
time in ms

// CFG_RESET_ IDLE_TIME 6
time in ms

// CFG_RSTVCC_OFF_TIME 7
time in ms

// CFG_APPLSTARTEN 8

APPLICATION_KEEP_RESET
APPLICATION_TOGGLE_RESET
APPLICATION_TOGGLE_VCC
APPLICATION_SOFT_RESET

w N PO

// CFG_APPL_RUN_TIME 9

Remote Control Programming User’s Guide PMO025A02 Rev.2

time in ms

// CFG_FLASHERASEMODE
ERASE_NONE_MEM_INDEX
ERASE_ALL_MEM_INDEX
ERASE_INFILE_MEM_INDEX
ERASE_DEF_CM_INDEX

// CFG_FLASHREADMODE
READ_ALL_MEM_INDEX
READ_PRGMEM_ONLY_INDEX
READ_INFOMEM_ONLY_INDEX
READ_DEF_MEM_INDEX

// CFG_FLASH LOCKBIT
// CFG_UNLOCK_DEBUG_BIT
// CFG_LOCK_BITS_EN

// CFG_VERIFYMODE
VERIFY_NONE_INDEX
VERIFY_STD_INDEX
VERIFY_FAST_INDEX

// CFG_IEEE_ADDR_MODE
AP_IEEE_ADDR_DISABLE
AP_WR_NEW_IEEE_ADDR
AP_RETAIN_CODE_WR_IEEE
AP_IEEE_ADDR_BLANK
AP_RETAIN_IEEE_ADDR
AP_ASSIGN_WR_IEEE_ADDR
AP_WR_IEEE_ADDR_FROM_FILE

// CFG_MAN_IEEE_ADDR_MODE
AP_TEEE_ADDR_DISABLE
AP_WR_NEW_TIEEE_ADDR
AP_RETAIN_CODE_WR_IEEE

// CFG_BEEP_OK_EN

// CFG_VCCINDEX
VCC_2V2_INDEX
VCC_2V4_INDEX
VCC_2V6_INDEX
VCC_2V8_INDEX
VCC_3V0_INDEX
VCC_3V2_INDEX
VCC_3V4_INDEX
VCC_3V6_INDEX

w N PO

w N PO

13

= U WD e O
~J [}

=
[e0)

O

O U W NN O

14

Remote Control Programming User’s Guide

PMO025A02 Rev.2

// CFG_TARGET_EN_MASK 20

TARGET_1_MASK 0x01

TARGET_2_MASK 0x02

TARGET_3_MASK 0x04

TARGET_4_MASK 0x08

TARGET_5_MASK 0x10

TARGET_6_MASK 0x20

mask can be defined as a logical sum of

TARGET_1_MASK | TARGET_2_MASK TARGET_6_MASK

// CFG_RETAIN_DEF_DATA_EN 21

O-disable 1-enable

// CFG_RETAIN_START_ADDR 22
0x00000 to Ox1FFFF

// CFG_RETAIN_STOP_ADDR 23
0x00000 to Ox1FFFF

// CFG_ERASE_DEFBLOCK1_EN 24
O-disable 1l-enable

// CFG_ERASE1_START_ADDR 25
0x00000 to Ox1FFFF

// CFG_ERASE1_STOP_ADDR 26
0x00000 to Ox1FFFF

// CFG_ERASE_DEFBLOCK2_EN 27
O-disable 1l-enable

// CFG_ERASE2_START_ADDR 28
0x00000 to Ox1FFFF

// CFG_ERASE2_STOP_ADDR 29
0x00000 to Ox1FFFF

// CFG_ERASE_DEFBLOCK3_EN 30
O-disable 1-enable

// CFG_ERASE3_START_ADDR 31
0x00000 to Ox1FFFF

// CFG_ERASE3_STOP_ADDR 32
0x00000 to Ox1FFFF

// CFG_ERASE_DEFBLOCK4_EN 33
O-disable 1-enable

Remote Control Programming User’s Guide PMO025A02 Rev.2

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

CFG_ERASE4_START_ADDR
0x00000 to Ox1FFFF

CFG_ERASE4_STOP_ADDR
0x00000 to Ox1FFFF

CFG_READ_DEFBLOCK1_EN
O-disable 1-enable

CFG_READI1_START_ADDR
0x00000 to Ox1FFFF

CFG_READ1_STOP_ADDR
0x00000 to Ox1FFFF

CFG_READ_DEFBLOCK2_EN
O-disable 1-enable

CFG_READ2_START_ADDR
0x00000 to Ox1FFFF

CFG_READ2_STOP_ADDR
0x00000 to Ox1FFFF

CFG_READ_DEFBLOCK3_EN
O-disable 1-enable

CFG_READ3_START_ADDR
0x00000 to Ox1FFFF

CFG_READ3_STOP_ADDR
0x00000 to Ox1FFFF

CFG_READ_DEFBLOCK4_EN
O-disable 1-enable

CFG_READ4_START_ADDR
0x00000 to Ox1FFFF

CFG_READ4_STOP_ADDR
0x00000 to Ox1FFFF

CFG_IEEE_ADDR_LOCATION

0x00000 to Ox1FFF8

CFG_IEEE_ADDR_LOC_MODE
O-default 1-defined

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Remote Control Programming User’s Guide

PMO025A02 Rev.2

// CFG_IEEE_ADDR_LSB_FIRST 50
O-disable 1l-enable

F_GetConfig

F_GetConfig - Get one item of the programmer’s configuration.
VALID FPA index -(1to8)

Similar to the F_GetSetup, but only one item from the cFG_Brock structure is read.

Syntax:
MSPPRG_API INT X F_GetConfig(INT X index);
Index’s list - see F_SetConfig

Return value:

Requested setup parameter;

Example:

F_GetSetup(config);
DeviceIndex = config.Devicelndex;
or directly
DeviceIndex = F_GetConfig(CFG_MICROCONTROLLER) ;

F_DispSetup

F_DispSetup - Copy programmer’s configuration to report message buffer in text form.
VALID FPA index -(1to8)

Syntax:
MSPPRG_API INT X F_DispSetup(void);

Return value:
1 - TRUE;

Example:

Remote Control Programming User’s Guide PMO025A02 Rev.2 56

F_DispSetup();
Disp_report_message () ;
//see F_ReportMessage or F_GetReportMessage for details

F_ReportMessage, F_Report_Message

F_ReportMessage - Get the last report message from the programmer.
or F_Report_Message
VALID FPA index -(1to8)

When any of the DLL functions is activated, a message is created and displayed on the
dynamically created programmer’s dialogue box. At the end of execution the dialogue box is
closed and function returns back to the application program. Reported message is closed as well.
The last report message can be read by application program using F_ReportMessage function.
When F_ReportMessage is called, then report message up to

REPORT_MESSAGE_MAX_SIZE 2000
characters is imported from the programmer software to the application software. Make sure to
declare characters string length no less then REPORT_MESSAGE_MAX_sTzE characters. When the
F_ReportMessage is called then at the end the internal report message buffer in the programmer
software is cleared. When F_ReportMessage is not called after every communication with the
target device, then the report message will collect all reported information up to
REPORT_MESSAGE_MAX_SIZE last characters.

Syntax:
MSPPRG_API void F_ReportMessage(char * text);
MSPPRG_API char* F_Report_Message(void);

note: F_Report_Message is available only with the Multi-FPA API-DLL.

Return value:
none

Example:

Remote Control Programming User’s Guide PMO025A02 Rev.2 57

#include “GangProCC-D11.h”;
char text [REPORT_MESSAGE_MAX_ SIZE];

Example below shows how to take a message and display it in the scrolling box. The Edit box
with the ID e.g. IDC_REPORT must be created first.

#include “GangProCC-D11.h”;
Cstring Message = "";

void CMspPrgDemoDlg: :Disp_report_message ()

{
char text[REPORT_MESSAGE_MAX_ SIZE];

F_ReportMessage(text); //API-D11 - get last report message
Message = text;

SetDlgItemText (IDC_REPORT, Message.GetBuffer (Message.GetLength()));
CEdit* pEdit = (CEdit*) GetDlgItem(IDC_REPORT) ;

pEdit->LineScroll (pEdit->GetLineCount (), 0);

UpdateWindow () ;

F_GetReportMessageChar

F_GetReportMessageChar - Get one character of the the last report message from the

programmer.
VALID FPA index -(1t08)

See comment for the F_ReportMessage function.

F_GetReportMessageChar allows to get character by character from the report message buffer.
This function is useful in the Visual Basic application, where all message can not be transfered
via pointer like it is possible in the C++ application.

Syntax:
MSPPRG_API char F_GetReportMessageChar(INT_X index);

Return value:

Remote Control Programming User’s Guide PMO025A02 Rev.2 58

Requested character from the Report Message buffer. 1 - TRUE

Example:

#include “GangProCC-D11.h”;

char text [REPORT_MESSAGE_MAX_SIZE];
INT_X k;

for(k = 0; k< REPORT_MESSAGE_MAX_ SIZE; k++)
] = F_GetReportMessageChar(k);

Example below shows how to take a message and display it in the scrolling box. The Edit box
with the ID e.g. IDC_REPORT must be created first.

#include “GangProCC-D11.h”;
Cstring Message = "";

void CMspPrgDemoDlg: :Disp_report_message ()
{
char text [REPORT_MESSAGE_MAX_SIZE];

INT X k;
for(k = 0; k< REPORT_MESSAGE_MAX_SIZE; k++)
text [k] = F_GetReportMessageChar(k);
Message = text;
SetDlgIltemText (IDC_REPORT, Message.GetBuffer (Message.GetLength()));
CEdit* pEdit = (CEdit*) GetDlgItem(IDC_REPORT) ;
pEdit->LineScroll (pEdit—->GetLineCount (), 0);
UpdateWindow () ;

F_ReadCodeFile, F_Read_CodeFile

F_ReadCodeFile - Read code data from the file and download it to internal buffer.
or F_Read_CodeFile
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Function F_ReadCodeFile downloads code from the file to internal memory buffer. Code file
format and file name and location path of the desired file must be specified. Three file formats
are supported - Texas Instruments text format, Motorola *.s19 format and Intel *.hex format.
When file is downloaded then contents of this file is analysed. Only code memory location valid

Remote Control Programming User’s Guide PMO025A02 Rev.2 59

for the Ccxx device family will be downloaded to the internal memory buffer. Any code data
located outside memory space of the Ccxx device will be ignored and warning message will be

created.

Syntax:
MSPPRG_API INT X F_ReadCodeFile(int file format, char * FileName);
MSPPRG_API INT_ X F_Read CodeFile(int file_format, CString FileName);

file format:

FILE_TI_FORMAT (1) for TI (*.txt) format
FILE_MOTOROLA_FORMAT (2) for Motorola (*.s19, *.s28 or *.s37)
FILE_INTEL_FORMAT (3) for Intel (*.hex)

FileName: file name including path, file name and extention

Return value:

(OxFFFe & info) | state
where state is defined as follows:
0 - FALSE
1 - TRUE

info is defined as follows:
warning —-> CODE_IN_ROM
CODE_IN_RAM
CODE_OUT_OF_FLASH
CODE_OVERWRITTEN
error -—> INVALID_CODE_FILE
OPEN_FILE_OR_READ_ERR

Example:

st = F_ReadCodeFile(FILE_TI_FORMAT, “c:\test\demofile.txt”);

if((st & 1) == TRUE)
{
}
else
{
if (st & CODE_IN_ROM) {...... }
if (st & CODE_OUT_OF_FLASH) {...... }
if (st & INVALID_CODE_FILE) {...... }
if (st & OPEN_FILE_OR_READ_ERR) {...... }

Remote Control Programming User’s Guide PMO025A02 Rev.2 60

F _Get_CodeCS

F_Get_CodeCS - Read code from internal buffer and calculate the check sum.
VALID FPA index -(1to8).

Syntax:
MSPPRG_API INT X F_Get_CodeCS(int index);

index - index of the desired code
Index =1 - Calculate check sum of the code from internal code buffer.
Other Index values - reserved for the future option.

Check Sum is calculated as an arithmetic sum of the 16-bits unsigned words form the valid code
bytes. If the only one byte is present in the calculated word, then other byte is taken as a OxFF.
Check Sum result is 32 bits.
For example from the following code

address data

0x0300 OxF2 0x12 0x23 0x34 O0x78

Check Sum calculation

Word 1 0x12F2
Word 2 0x3423
Word 2 0xFF78
CS = 0x0001468D

Return value:
Calculated check sum.

F_ConfigFileLoad, F_Config_FileLoad

F_ConfigFileLoad - Modify programmer’s configuration setup according to data taken
or F_Config_FileLoad from the specified configuration file.

Remote Control Programming User’s Guide PMO025A02 Rev.2 61

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

The F_ConfigFileLoad function can download the programmer setup from the external setup
file. Setup file can be created using standard GangPro-CC (GUI) Flash Programmer software.
When the setup from the file is downloaded, then old configuration setup is overwritten. The
new setup can be modified using F_GetSetup and F_ConfigSetup functions.

Location path and file name of the config file must be specified.

Syntax:
MSPPRG_API INT X F_ConfigFileLoad(char * filename);
MSPPRG_API iNT_x F_ConfigFileLoad(Cstring filename);

filename - configuration file name including path, file name and extention

Return value:

0 - FALSE

1 - TRUE

(0xFFFe & info) | state

where state is defined as follows:
0 - FALSE
1 - TRUE

info is defined as follows:
error -> OPEN_FILE_OR_READ_ERR

Configuration file is a standard text file with the parameters name and value.

Example:
st F_ConfigFileLoad(*“c:\test\configfile.cfg”);
if((st & 1) == TRUE)
{
}
else

F_Clr_Code_Buffer

F_ClIr_Code_Buffer - Clear content of the code buffer.

Remote Control Programming User’s Guide PMO025A02 Rev.2 62

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT_X F_Clr Code_Buffer(void);

Return value:

0 - FALSE
1 - TRUE
Example:

F_Put_Byte_to_Code_Buffer

F_Put_Byte_to_Code_Buffer - Write code data to code buffer.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Instruction allows to write contents of the code to code buffer instead using the F_ReadCodeFile
instruction. Contents of the downloaded code data can be modified or filled with the new data, if
code buffer has been cleared first (using F_Clr_Code_Buffer function).

Syntax:
MSPPRG_API INT X F_Put_Byte_ to_Code_Buffer(INT X address, BYTE data);

Parameters value:
code address — 0x0 to Ox1FFFF
data - 0x00 to OxFF

Return value:

0 - FALSE
1 - TRUE
Example:

BYTE code [MAX_FLASH_SIZE];
F_Clr_Code_Buffer();
for(address = 0x0; address < MAX_ FLASH SIZE; address ++)

Remote Control Programming User’s Guide PMO025A02 Rev.2 63

F_Put_Byte_to_Code_Buffer(address, codel[address]);

F_Get_Byte_from_Code_Buffer

F_Get_Byte_from_Code_Buffer - Read code data from code buffer.
VALID FPA index -(1to8)

Instruction allows to read or verify contents of the code from code buffer

Syntax:
MSPPRG_API INT_X F_Get_Byte_ from Code_Buffer(INT_X address);

Parameters value:
code address - 0x0 to MAX FLASH SIZE-1 (Ox1FFFF)

Return value:
0x00 to OxFF - wvalid code data
-1 (OxFFFF) - code data not initialized on particular address

F_Put_IEEEAddré64_to_Gang_Buffer

F_Put_IEEEAddr64_to_Gang_Buffer - Write IEEE address to Gang buffer.
VALID FPA index -(1to8).

Instruction allows to write one unique IEEE address to Gang buffer. Contents of the IEEE address
from the Gang buffers will be saved to target device when the F_Autoprogram(0) is executed and
when in the configuration setup this option is enabled.

Syntax:
MSPPRG_API void F_Put_IEEEAddr64_to_Gang Buffer (BYTE target_no, ULONG64 data
)i

Parameters value:
target_no - 1 to 6

Remote Control Programming User’s Guide PMO025A02 Rev.2 64

data - 64 bits unsigned long integer number 0 to OXFFFFFFFFFFFFFFFF

F_Put_IEEEAddr_Byte_to_Gang_Buffer

F_Put_IEEEAddr_Byte_to_Gang_Buffer - Write IEEE address to Gang buffer.
VALID FPA index -(1to8).

Instruction allows to write one byte of the IEEE address to Gang buffer. Contents of the IEEE
address from the Gang buffers will be saved to target device when the F_Autoprogram(0) is
executed and when in the configuration setup this option is enabled.

Syntax:
MSPPRG_API INT_X F_Put_IEEEAddr64_to_Gang Buffer (BYTE target_no, Byte no, BYTE
data);

Instruction is functionally the same as the F_Put_IEEEAddré64_to_Gang_Buffer, but allows to
transfer byte by byte of the 64 IEEE address to buffer. Function is used when the Visual Basic 6 is
used, that not support the Int 64 bits data.

no->0to7.
Index no MUST started from O and finished on 7 to transfer whole IEEEAddr. When no =0, the
lowest byte of the IEEEAddr must be transferred. When no =7, the highest byte of the
IEEEAddr is transferred.

Parameters value:
target_no - 1 to 6
no — 0 to 7
data - one byte from the 64 bits IEEE address

F_Get_IEEEAddr64_from_Gang_Buffer

F_Get_IEEEAddré64_from_Gang_Buffer - Read IEEE address contents from Gang buffer
VALID FPA index -(1to8)

Syntax:
MSPPRG_API ULONG64 F_Get_IEEEAddré64_from Gang Buffer(BYTE target_no);

Parameters value:
target_no - 1 to 6

Remote Control Programming User’s Guide PMO025A02 Rev.2 65

Return value:
64 bits unsigned long integer number 0 to OxXFFFFFFFFFFFFFFFF

F_Get_IEEEAddr_Byte_from_Gang_Buffer

F_Get_IEEEAddr_Byte_from_Gang_Buffer - Read IEEE address contents from Gang buffer
VALID FPA index -(1to8)

Syntax:
MSPPRG_API BYTE F_Get_IEEEAddr_ Byte_ from Gang Buffer(BYTE target_no, BYTE
no);

Instruction is functionally the same as the F_Get_IEEEAddr64_from_Gang_Buffer, but allows
to transfer byte by byte of the 64 IEEE address from buffer. Function is used when the Visual
Basic 6 is used, that not support the Int 64 bits data.

no->0to7.
When no = 0, the lowest byte of the IEEEAddr is transferred. When no =7, the highest byte of
the IEEEAddr is transferred.

Parameters value:
target_no - 1 to 6
no - 0 to 7

Return value:
one byte of the IEEEAddr data

F_Get_Lock_Bits

F_Get_Lock_Bits - Read Lock Bits taken from Gang buffer. Function
F_Verify_Lock_Bits() should be used first to read the clock bits

from target devices.
VALID FPA index -(1to8)

Lock Protection bits
bit-4 0x10 - Boot Block Lock
0 - Page 0 is write protected
1 - Page 0 is writable, unless LSIZE is 000

Remote Control Programming User’s Guide PMO025A02 Rev.2 66

bits3:1 LSIZE - Sets the size of the upper Flash area which is write-protected

bit 0 0x01 Debug lock bit
0 - Disable debug command
1 - Enable debug command
Syntax:

MSPPRG_API INT_X F_Get_Lock Bits(BYTE target_no);

Parameters value:
target_no - 1 to 6

Return value:
0x100 | 8 bits Lock Bits value (see above)
if debug bit is enabled or
0x100
if debug bit is disabled (access to other bits is locked)

F_Power_Target

F_Power_Target - Turn ON or OFF power from programming adapter to target
device.
VALID FPA index -(1to8) or(0 (ALL FPAs) executed sequentially.

Function F_Power_Target switches ON or OFF power from the programming adapter to the target
device.

Note: PowerTargetEn flag must be set to TRUE (1) in the configuration setup to switch the
power from the programming adapter ON.

Syntax:
MSPPRG_API INT X F_Power_Target(INT X OnOff);

Return value:

0 - FALSE
1 - TRUE
Example:
F_Power_Target (1); // Turn Power ON
F_Power_Target(0); // Turn Power OFF

Remote Control Programming User’s Guide PMO025A02 Rev.2 67

F_Reset_Target

F_Reset_Target - Generate short RESET pulse on the target’s device RESET line.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Function F_Reset_Target resets target device and target device’s application program can start.
Length of the RESET pulse time is specified by ResetTimeIndex in configuration setup. See
F_ConfigSetup description for details.

Syntax:
MSPPRG_API INT_X F_Reset_Target(void);

Return value:

0 - FALSE
1 - TRUE
Example:

F_Get_Targets_Result

F_Get_Targets_Result - Get target’s devices result mask. When particular bit is set then the

selected target device result is positive, otherwise failed.
VALID FPA index -(1to8)

Syntax:
MSPPRG_API INT X F_Get_Targets_Result(void);

Return value:

INT_X - execution result for up to six target devices.

TARGET_1_MASK 0x01
TARGET_2_MASK 0x02
TARGET_3_MASK 0x04
TARGET_4_MASK 0x08

Remote Control Programming User’s Guide PMO025A02 Rev.2 68

TARGET_5_MASK
TARGET_6_MASK

Bit - 0 - false
bit - set - true

Example:
INT_X st;

0x10
0x20

F_SetConfig(CFG_TARGET_EN_INDEX, OxOF);

F_Autoprogram(0) ;
st = F_Get_Targets_Result () ;

//if st == 0x0B then programming of the target device no 3 failed.

F_Get_Active_Targets_Mask

//enable to program four target
//devices - no 1,2,3 and 4

//1f st == 0xO0F then all four
//selected target devices have been
//programmed and verified

F_Get_Active_Targets_Mask

VALID FPA index -(1t08)

Syntax:

- Get mask of the active targets. When particular bit is set

then the selected target is active, otherwise target is not

present, disabled by user, not active or disabled by software

during access test.

MSPPRG_API INT X F_Get_Active_Targets_Mask(void);

Return value:

INT_X - execution result for up to six target devices - 0x00 to O0x3F.

TARGET_ 1 MASK

TARGET_2_MASK

TARGET_3_MASK

TARGET_4_MASK

TARGET_5_MASK

TARGET_6_MASK
Bit - 0 - false

0x01
0x02
0x04
0x08
0x10
0x20

Remote Control Programming User’s Guide PMO025A02 Rev.2

69

bit - set - true

Example:
INT_X st;

F_SetConfig(CFG_TARGET_EN_INDEX, O0x0F);
//enable to program four target
//devices - no 1,2,3 and 4
F_Open_Target_Device();

st = F_Get_Active_Targets_Mask () ; //1if st == 0x0F then communication
//with all four selected target
//devices have been activated.
//if st == 0x0B then access to the target device no “‘3' failed.

F_Close_Target_Device();
st = F_Get_Active_Targets_Mask () ;
// st will be 0. Access to all devices have been closed.

F_Get_Targets_Vcc

F_Get_Targets_Vcc - Get Vcc in [mV] supplied target device.
VALID FPA index -(1to8)

Syntax:
MSPPRG_API INT X F_Get_Targets_Vcc(void);
Return value:
INT_X - Vcc in milivolts e.g 3000 -> 3.0 V
or (-1) if USB-FPA is not active

Remote Control Programming User’s Guide PMO025A02 Rev.2 70

4.3 Encapsulated instructions

Encapsulated functions are powerful and easy to use. When called then all device actions from the
beginning to the end are done automatically and final result is reported as TRUE or FALSE.
Required configuration should be set first using F_GetSetup and F_ConfigSetup functions.
Encapsulated function has following sequence:

- Power from the programming adapter becomes ON if Power TargetEn in configuration

setup is enabled.

- Vcc is verified to be higher then 2.0V.

- Communication between programming adapter and target device is initialized.

- Selected encapsulated instruction is executed (Autoprogram, Memory Erase etc.).

- Communication between target device and programming adapter is terminated.

- Power from the programming adapter becomes OFF (if selected).

- Target device is released from the programming adapter.

F_AutoProgram

F_AutoProgram - Target device program with full sequence - erase, blank check,

program, verify and blow security fuse (if enabled).
VALID FPA index -(1to8) or0 (ALL FPAs) executed simultaneously.

Auto Program button is the most frequently function when programming microcontrollers in
the production process. Auto Program function activates all required procedures to fully program and
verify the flash memory contents. Typically, when flash memory needs to be erased, Auto Program
executes the following procedures:

- initialization

- read retained data (if required)

- read IEEE address contents(if required)

- erase flash memory,

- memory blank check,

- flash programming,

- restoring or writing the new IEEE address (if required)

- restoring retained data (if required)

- flash memory verification (check sum verification of whole verification byte by byte),

- write lock protection bits (if required).

- switch-off Vcc from target device.

Remote Control Programming User’s Guide PMO025A02 Rev.2 71

Syntax:

MSPPRG_API INT_X F_AutoProgram(INT_ X mode);
mode = 0;
mode = 1 and up - reserved

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “1' - TRUE
‘0" — FALSE
Example:
if(F_Initialization() != TRUE) //required API-D11 - initialization

// Initialization error

F_GetSetup(&config); //API-DLL - get configuration from the programmer
............................ // modify configuration if required
F_ConfigSetup(config); // download setup to programmer

int st = F_ConfigFileLoad(“c:\test\configfile.cfg”);
if((st & 1) != TRUE)
{

Info = st & OxFFFE;

do{

.................... // prepare next microcontrollers
targets_mask = 0x3F //active all six target devices
F_SetConfig(CFG_TARGET_EN_INDEX, (INT_X)targets_mask);
if(F_AutoProgram(0) == targets_mask)

{
//all target devices programmed

}

else

{
//some targets has nod been programmed

}

.................... //exit if the last microcontrollers
// has been programmed
} while(1);

F_Verify_Lock_Bits

Remote Control Programming User’s Guide PMO025A02 Rev.2 72

F_Verify_Lock_Bits -Verify the Lock debug Bit. If debug access is disabled, then only
debug bit is verified. Other bits are not accessible when the debug bit
enable is clear. Result is saved in the Gang Buffer. Results from the
Gang Buffer can be taken using function F_Get_Lock_Bits.

VALID FPA index -(1to8) or0 (ALL FPAs) executed simultaneously.

Syntax:
MSPPRG_API INT X F_Verify Lock Bits(void);
Return value:
Target devices result mask - 0x00 to Ox3F
When bit is “‘1' - TRUE
‘0" - FALSE

F_Memory_Erase

F_Memory_Erase - Erase Target’s Flash Memory
VALID FPA index -(1to8) or0 (ALL FPAs) executed simultaneously.

Erase flash size, or sector to be erased, should be specified in the configuration setup. When mode
erase flag is set to one, then all memory will be erased, regardless erase memory configuration setup

value.
Syntax:
MSPPRG_API INT X F_Memory_ Erase(INT_X mode);
mode = 0 —-> erase space specify by the FlashEraseModeIndex;
mode = 1 —-> erase all Flash memory, regardless FlashEraseModeIndex;

Return value:

Target devices result mask - 0x00 to O0x3F
When bit is “‘1' - TRUE
‘0" - FALSE

F_Memory_Blank_Check

F_Memory_Blank_Check - Check if the Target’s Flash Memory is blank.

Remote Control Programming User’s Guide PMO025A02 Rev.2 73

VALID FPA index -(1to8) or0 (ALL FPAs) executed simultaneously.

Syntax:
MSPPRG_API INT_X F_Memory Blank_ Check(void);

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “1' - TRUE
‘0' - FALSE

F_Memory_Write

F_Memory_Write - Write content taken from the Code file to the selected Target
Devices Flash Memory.
VALID FPA index -(1to8) or0 (ALL FPAs) executed simultaneously.

Syntax:
MSPPRG_API INT X F_Memory Write(INT_X mode);
mode = 0;
mode = 1 and up - reserved

Return value:

Target devices result mask - 0x00 to O0x3F
When bit is “1' - TRUE
‘0" - FALSE

F_Memory_Verify

F_Memory_Verify - Verify contents of the selected Target Devices Flash Memory and
Code file.
VALID FPA index -(1to8) or0 (ALL FPAs) executed simultaneously.

Note: During the verification process either all memory or just the selected part of the memory is
verified, depending on settings specified in the configuration setup FlashEraseModeIndex.
Only data taken from the Code file are compared with the target’s flash memory. If size of the
flash memory is bigger then code size then all reminding data in flash memory is ignored.

Remote Control Programming User’s Guide PMO025A02 Rev.2 74

Syntax:

MSPPRG_API INT X F_Memory_ Verify(INT_X mode);
mode = 0;
mode = 1 and up - reserved

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “1' - TRUE
‘0' - FALSE

F_Gang_Flash_Read

F_Gang_Flash_Read - Read Flash memory from selected or all Target Devices.
VALID FPA index -(1to8) or0 (ALL FPAs) executed simultaneously.

Size of the read memory size is defined in the configuration setup
All data will be saved in the internal Read Gang Buffer. Contents from the Raed Gang Buffer can be
taken using function

BYTE F_Get_Byte from Gang Buffer(BYTE target_no, INT X addr);

Syntax:
MSPPRG_API INT X F_Gang Flash Read(void);

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “1' - TRUE
‘0' - FALSE
Example:

BYTE data [MAX_FLASH_SIZE] [MAX_TARGET_DEVICE_NUMBER];
unsigned int addr, n;

st = F_Gang_Flash_Read();

if (st !'= 0)

for(n=0; n<MAX_TARGET_DEVICE_NUMBER; n++)

for(addr=0x0; addr<=0x1FFFF; addr++)
dataladdr] [n] = F_Get_Byte_from_Gang_Buffer(n, addr);

Remote Control Programming User’s Guide PMO025A02 Rev.2 75

F_Write IEEE Address

F_Write_IEEE_Address - Write content taken from the IEEE Address Gang buffer to
target devices. Write IEEE address option should be enabled
in the configuration setup.

VALID FPA index -(1to8) or0 (ALL FPAs) executed simultaneously.

Syntax:
INT_X MSPPRG_API F_Write_ IEEE Address(void);

Return value:

Target devices result mask - 0x00 to O0x3F
When bit is “1' - TRUE
‘0" - FALSE
Example:

F_Put_IEEEAddr64_to_Gang_Buffer(1, 0x0123456789ABCDEO);
F_Put_IEEEAddr64_to_Gang_Buffer(2, 0x0123456789ABCDEl);
F_Put_IEEEAddr64_to_Gang_Buffer(6, 0x0123456789ABCDES);
F_Write_ IEEE_Address();

F Read IEEE_Address

F_Read_IEEE_Address - Read IEEE Addresses from target devices and save it in the
IEEE gang buffer

VALID FPA index -(1to8) or0 (ALL FPAs) executed simultaneously.

Syntax:
INT_X MSPPRG_API F_Read IEEE_Address(void);

Return value:
Target devices result mask - 0x00 to O0x3F

Remote Control Programming User’s Guide PMO025A02 Rev.2 76

When bit is ‘1' - TRUE
‘0" - FALSE

Example:
#define “GangProCC-D11.h”;
ULONG64 IEEE([6];

F_Read_IEEE_Address () ;

IEEE[0] = F_Get_IEEEAddr64_from_Gang_Buffer(1);
IEEE[1l] = F_Get_IEEEAddr64_from_Gang_Buffer(2);
IEEE[5] = F_Get_IEEEAddr64_from_Gang_Buffer(6);
F_Write_Lock_Bits
F_Write_Lock_Bits - Write lock bits to target devices. Contents of the lock bits should be

set first using configuration setup instructions.

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT X F _Write_Lock_Bits(void);

Return value:

Target devices result mask - 0x00 to O0x3F
When bit is “1' - TRUE
‘0" - FALSE

Remote Control Programming User’s Guide PMO025A02 Rev.2 77

4.4 Sequential instructions

Sequential instructions allow access to the target device in any combination of the small

instructions like erase, read, write sector, modify part of memory etc. Sequential instruction have an
access only when communication between target device and programming adapter is initialized. This
can be done when F_Open_Target_Device instruction is called. When communication is established,
then any of the sequential instruction can be called. When the process is finished, then at the end
F_Close_Target_Device instruction should be called. When communication is terminated, then
sequential instructions can not be executed.
Note: Erase/Write/Verify/Read configuration setup is not required when sequential instructions are
called. Also code file is not required to be downloaded. All data to be written, erased, and read is
specified as a parameter to the sequential functions. Data downloaded from the code file is ignored
in this case.

Very important:

The sequential functions allows to program words in the FLASH memory on any flash space location.
Also the same bytes / words can be programmed few times. Software is not be able to control how
many times the same location of the flash has been programmed between erasures. User should take
afull responsibility for programming the flash memory according to the CCxx specifications. See TI's
data sheets and manuals for details.

The following flash programming limitation should be taken to consideration:

1. The same word or byte can not be programmed more then twice between erasures. Otherwise,
damage can occur.

2. In the CCxx flash device two or four bytes are programmed simultaneously. This means -
programmed bytes should be prepared first and flashed as a block with two or four bytes
length. Otherwise four independent bytes programmed separately will be programmed four
times - one time with required data and 3 times with OxFF data.

Note: CCxx devices with max flash size up to 32 kB have two bytes size programming word
in the flash, while the CCxx with bigger flash memory size (up to 128 kB), have four bytes size
writing word.

Remote Control Programming User’s Guide PMO025A02 Rev.2 78

F_Open_Target_Device

F_Open_Target_Device - Initialization communication with the target device.
VALID FPA index -(1to8) or0 (ALL FPAs) executed simultaneously.

When F_Open_Target_Device is executed, then
- Power from the programming adapter becomes ON if PowerTargetEn in configuration
setup is enabled.
- Vcc is verified to be higher then 2.0V.
- communication between programming adapter and target device is initialized.
Target device is ready to get other sequential instructions.

Syntax:
MSPPRG_API INT X F_Open_Target_Device(void);

Return value:

Target devices result mask - 0x00 to O0x3F
When bit is “1' - TRUE
‘0" - FALSE
Example:
int st, mask;
long addr;
mask = 0x3F; //enable all six target devices

F_SetConfig(CFG_TARGET_EN_INDEX, (INT_X)mask) ;
F_Open_Target_Device();

F_Segment_Erase (0x1000);

st = F_Sectors_Blank_Check(0x1000, 0x107f);
if(st != mask)

for(addr = 0x1000; addr<0x1020; addr++)
F_Put_Byte_to_Gang_Buffer(1, addr, data(addr))
F_Copy_Buffer_to_Flash(0x1000, 0x20);
//copy content from Gang Buffer no ‘1' to all target
F_Segment_Erase (0x4000);

Remote Control Programming User’s Guide PMO025A02 Rev.2 79

F_Close_Target_Device

F_Close_Target_Device - Termination communication between target device and programming
adapter.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Instruction should be called on the end of the sequential instructions. When F_Close_Target_Device
instruction is executed then:

- Communication between target device and programming adapter is terminated.

- Power from the programming adapter becomes OFF (if selected).

- Target device is released from the programming adapter.

Syntax:
MSPPRG_API INT X F_Close_Target_Device(void);

Return value:

Target devices result mask - 0x00 to O0x3F
When bit is “1' - TRUE
‘0" - FALSE
Example:

See example above (F_Open_Target_Device).

F_Segment_Erase

F_Segment_Erase - Erase any segment of the CCxx Flash memory.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Parameters:
segment address - Any address form the desired segment space addresses

To erase a memory segment specify an address within that memory segment. For example to erase
segment 0x2000-0x27FF any address from the range 0x2000 to 0x27FF can be specified. To erase

all memory segments, erase the memory segment by segment, or used the encapsulated instruction
F_Memory_FErase(1l);

Remote Control Programming User’s Guide PMO025A02 Rev.2 80

Note: When encapsulated instruction is executed, then next access to the sequential instruction can
be accessed only when F_Open_Target_Device instruction is called again.

Syntax:
MSPPRG_API INT X F_Segment_Erase(INT_X address);

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “1' - TRUE
‘0" - FALSE
Example:
F_Segment_Erase (0x4000) ; // erase segment 0x4000 to O0x47FF
F_Segment_Erase (0x4100) ; // erase the same segment

F_Sectors_Blank Check

F_Sectors_Blank_Check - Blank check part or all Flash Memory. Start and stop address of the
tested memory should be specified.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Parameters:
start address - Even number from 0x0 to Ox1FFFE,
stop address - Odd number from 0x1 to Ox1FFFF,,
Syntax:

MSPPRG_API INT X F_Sectors_Blank Check(INT X start_addr,
INT X stop_addr);

Return value:

Target devices result mask - 0x00 to 0x3F
When bit is ‘1' - TRUE
‘0' - FALSE
Example:
F_Sectors_Blank_Check (0x1000, O0x107F) ; //INFO secto blank check

Remote Control Programming User’s Guide PMO025A02 Rev.2 81

F_Sectors_Blank_Check (0x8000, OxXFFFF) ; //32 kB memory size blank check
F_Sectors_Blank_Check (0x1220, 0x123f) ; //part of sector blank check

F_Write_Byte_to_XRAM

F_Write_Byte_to_XRAM - Write one byte to XRAM.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Write one byte to any XRAM location of the target devices.

Parameters:
address - address where XRAM is located 0xDF0O0 to OxFFFF,
data - one byte to be written to target device

Syntax:

MSPPRG_API INT X F_Write Byte to XRAM(INT X addr, BYTE data);

Return value:

Target devices result mask - 0x00 to O0x3F
When bit is “1' - TRUE
‘0" - FALSE
Example:

F_Write_Byte_to_XRAM(0xF010, 0x21);

F_Write_Byte_to_direct_ RAM

F_Write_Byte_to_direct_RAM - Write one byte to direct RAM.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Write one byte to any direct RAM location of the target devices.

Parameters:
address - address where RAM is located 0x00 to OxFF,
data - one byte to be written to target device
Syntax:

Remote Control Programming User’s Guide PMO025A02 Rev.2 82

MSPPRG_API INT_X F_Write Byte_to_direct_ RAM(INT_X addr, BYTE data);

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “1' - TRUE
‘0' - FALSE
Example:

F_Write_Byte_to_direct_RAM(0x60, 0x33);

F_Copy_Buffer_to_Flash

F_Copy_Buffer_to_Flash - Write data from the Gang Buffer no ‘1'ta all selected target devices.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Parameters:
start address - Flash address from 0x0 to Ox1FFFF,
size - Size from 1 to mMax_rrasH_sIzE (0x20000) - block of data in bytes
to be written.
Syntax:

MSPPRG_API INT X F_Copy_Buffer_to_Flash(INT_X start_addr, INT X size);

Return value:

Target devices result mask - 0x00 to O0x3F
When bit is “1' - TRUE
‘0" - FALSE
Example:
long addr;

int mask;

for(addr = 0x1000; addr<0x2100; addr++)

F_Put_Byte_to_Gang_Buffer(1, addr, (BYTE) (0OxFF & addr));
mask = 0x3F; //enable all six target devices
F_SetConfig(CFG_TARGET_EN_INDEX, (INT_X)mask);
F_Open_Target_Device();
F_Copy_Buffer_to_Flash(0x1000, 0x1100);

Remote Control Programming User’s Guide PMO025A02 Rev.2 83

F_Copy_Gang_Buffer_to_Flash

F_Copy_Gang_Buffer_to_Flash - Write data block from Gang Buffers to Target Devices.
- Data from Gang Buffer no’1' to Target Device no ‘1'
- Data from Gang Buffer no’2' to Target Device no 2'

- Data from Gang Buffer no’6' to Target Device no ‘6'

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Parameters:
start address - Flash address from 0x0 to Ox1FFFF,
size - Size from 1 to Max_rrasH_s1zE (0x20000) - block of data in bytes
to be written.
Syntax:

MSPPRG_API INT X F_Copy_Gang Buffer to_Flash(INT X start_addr, INT_X size);

Return value:

Target devices result mask - 0x00 to O0x3F
When bit is “1' - TRUE
‘0" - FALSE
Example:
long addr;

int n, mask;
for(n=0; n<MAX_TARGET_DEVICE_NUMBER; n++)
for(addr=0x1000; addr<=0x1020; addr++)
F_Put_Byte_to_Gang_Buffer(n, addr, dataladdr][n]);
mask = 0x3F; //enable all six target devices
F_SetConfig(CFG_TARGET_EN_INDEX, (INT_X)mask);
F_Open_Target_Device();
F_Copy_Gang_Buffer_to_Flash(0x1000, 0x20);

Remote Control Programming User’s Guide PMO025A02 Rev.2 84

F_Copy_Flash_to_Gang_Buffer

F_Copy_Flash_to_Gang_Buffer - Read specified in “size” number of bytes from Flash and save
it in the temporary gang buffer. Starting address is specified in
the “start address”.

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT X F_Copy Flash to_Gang Buffer(INT_X start_address,
INT X size);
Parameters:

start address
size

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “‘1' - TRUE
‘0' - FALSE

NOTE: Specified address in the temporary RAM/Flash buffer is the same as a physical RAM
address.

Example:

st = F_Copy_Flash_to_Gang_Buffer(0x2220, 0xEQ0);
if(st == TRUE)
{
for(n=0; n<MAX_TARGET_DEVICE_NUMBER; n++)
for(addr = 0x2220; addr<0x2300; addr++)
dataladdr] [n] = F_Get_Byte_from_ Gang_Buffer(n, addr);

F_Copy_Buffer_to_XRAM

Remote Control Programming User’s Guide PMO025A02 Rev.2 85

F_Copy_Buffer_to_XRAM - Write “size” number of bytes from the temporary
XRAM/Flash gang buffer no ‘1'to XRAM. Starting address is
specified in the “start address”.

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT X F_Copy_ Buffer to_XRAM(INT X start_address, INT_ X size);
Parameters:
start address - physical XRAM address 0xDF00 to OxFFFF
size - size in bytes

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “1' - TRUE
‘0' - FALSE

NOTE: Specified address in the temporary XRAM/Flash buffer is the same as a physical
XRAM address.

Example:

for(addr = 0xF220; addr<0xF300; addr++)
st = F_Put_Byte_To_Gang_Buffer(1, addr, dataladdr]);
st = F_Copy_Buffer_to_XRAM(0xF220, O0xEQ0);

F_Copy_Gang_Buffer_to_XRAM

F_Copy_Gang_Buffer_to_XRAM - Write “size” number of bytes from the temporary
XRAM/Flash Gang Buffers to XRAM.
Data from Gang Buffer no ‘1' to XRAM of the Target’s no ‘I'
Data from Gang Buffer no ‘2' to XRAM of the Target’s no ‘2'

Data from Gang Buffer no ‘6' to XRAM of the Target’s no ‘6’

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Remote Control Programming User’s Guide PMO025A02 Rev.2 86

Syntax:
MSPPRG_API INT X F_Copy_Gang Buffer to XRAM(INT X start_address,
INT X size);

Parameters:
start address - physical XRAM address 0xDF00 to OxFFFF
size - size in bytes

Return value:

Target devices result mask - 0x00 to O0x3F
When bit is ‘1' - TRUE
‘0" - FALSE

NOTE: Specified address in the temporary XRAM/Flash buffer is the same as a physical
XRAM address.

Example:

for(n=0; n<MAX_TARGET_DEVICE_NUMBER; n++)
for(addr = 0xF220; addr<0xF240; addr++)
st = F_Put_Byte_To_Gang_Buffer(n, addr, dataladdr][n]);
st = F_Copy_Gang_Buffer_to_XRAM(0xF220, 0x20);

F_Copy_XRAM_to_Gang_Buffer

F_Copy_XRAM_to_Gang_Buffer - Read specified in “size” number of bytes from the XRAM
and save it in the temporary gang buffer. Starting address is
specified in the “start address”.

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT X F_Copy_ XRAM to_Gang_Buffer(INT X start_address,
INT X size);

Parameters:
start address - physical XRAM address 0xDF00 to OxFFFF
size - size in bytes

Return value:
Target devices result mask - 0x00 to Ox3F

Remote Control Programming User’s Guide PMO025A02 Rev.2 87

When bit is ‘1' - TRUE
‘0" - FALSE

NOTE: Specified address in the temporary XRAM/Flash buffer is the same as a physical
XRAM address.

Example:

st = F_Copy_XRAM_to_Gang_Buffer(0xF220, O0xEO0);
if(st == TRUE)
{
for(n=0; n<MAX_TARGET_DEVICE_NUMBER; n++)
for(addr = 0xF220; addr<0xF300; addr++)
dataladdr] [n] = F_Get_Byte_from_Gang_Buffer(n, addr);

F_Copy_Buffer_to_direct RAM

F_Copy_Buffer_to_direct_ RAM - Write “size” number of bytes from the temporary XRAM/Flash gang
buffer no ‘1' to direct RAM. Starting address is specified in the “start
address”.

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT X F_Copy_Buffer to_direct_RAM(INT X start_address, INT_X

size);

Parameters:
start address — direct RAM address 0x00 to OxFF
size - size in bytes

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “1' - TRUE
‘0' - FALSE
Example:

Remote Control Programming User’s Guide PMO025A02 Rev.2 88

for(addr = 0x60; addr<0x7f; addr++)
st = F_Put_Byte_To_Gang_Buffer(1, addr, dataladdr]);
st = F_Copy_Buffer_to_direct_RAM(0x60, 0x20);

F_Copy_Gang_Buffer_to_direct_ RAM

F_Copy_Gang_Buffer_to_direct RAM - Write “size” number of bytes from the temporary Gang Buffers
to direct._ RAM.
Data from Gang Buffer no ‘1' to direct RAM of the Target’s no ‘1'
Data from Gang Buffer no ‘2' to direct RAM of the Target’s no ‘2'

Data from Gang Buffer no ‘6' to direct RAM of the Target’s no ‘6’

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT X F_Copy_Gang Buffer to_direct_ RAM(INT_X start_address,
INT X size);

Parameters:
start address — direct RAM address 0x00 to OxFF
size - size in bytes

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “1' - TRUE
‘0' - FALSE

F_Copy_direct_ RAM_to_Gang_Buffer

F_Copy_direct_ RAM_to_Gang_Buffer - Read specified in “size” number of bytes from the
direct RAM and save it in the temporary gang buffer.
Starting address is specified in the “start address”.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT X F_Copy_direct_ RAM to_Gang Buffer(INT_X start_address,
INT X size);
Parameters:

Remote Control Programming User’s Guide PMO025A02 Rev.2 89

start address — direct RAM address 0x00 to OxFF
size - size in bytes

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “1' - TRUE
‘0" - FALSE

F_Put_Byte_to_Gang_Buffer

F_Put_Byte_to_Gang_Buffer - Write byte to temporary Gang buffer.
VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT X F_Put_Byte_to_Gang Buffer(BYTE target no,
INT X address, BYTE data);
target no: destination target’s number from 1 to 6
address: temporary buffer address equal the RAM/XRAM or Flash
destination address (0x0000 to Ox1FFFFE)
data: Byte to be written.

Return value:
TRUE 1f specified address is legal (0x0000 to Ox1FFFF) otherwise FALSE.

NOTE: Specified address in the temporary RAM or Flash buffer is the same as a physical
RAM/FLASH address.
NOTE: DLL contains two Gang Buffers - one is dedicated to the data READ from target

devices, second one is dedicated to the data to be WRITE to the target devices.
Contents of the Gang Buffers can not be verified by writing and read the same data
to the Gang Buffers e.g.

F_Put_Byte_to_Gang_Buffer (1, 0x1000, 5);
data = F_Get_Byte_from Gang_ Buffer(l, 0x1000);

Read data can be other that ‘5'.

for(n=0; n<MAX_TARGET_DEVICE_NUMBER; n++)
for(addr = 0x1000; addr<0x1020; addr++)

Remote Control Programming User’s Guide PMO025A02 Rev.2 90

st = F_Put_Byte_to_Gang_Buffer(n, addr, dataladdr][n]);
st = F_Copy_Gang_Buffer_to_Flash(0x1000, 0x20);

F_Get_Byte_from_Gang_Buffer

F_Get_Byte_from_Gang_Buffer - Read one byte from the temporary RAM/Flash Gang
buffer.
VALID FPA index -(1t08)
Syntax:
MSPPRG_API BYTE F_Get_Byte_ from Gang Buffer(BYTE target_no,

INT X address);

Return value:
Requested byte from the specified address of the RAM/Flash temporary
buffer.

Example:
see F_Copy_All_Flash_To_Buffer.

NOTE: DLL contains two Gang Buffers - one is dedicated to the data READ from target
devices, second one is dedicated to the data to be WRITE to the target devices.
Contents of the Gang Buffers can not be verified by writing and read the same data
to the Gang Buffers e.g.

Remote Control Programming User’s Guide PMO025A02 Rev.2 91

F_Set PC_and_ RUN

F_Set_PC_and_RUN - Instructions allows to run program in microcontroller from specified
PC in the XRAM or Flash location. Program should be downloaded
first using the Write to Flash or XRAM procedures.

Note: The F_Open_Target_Device instruction is resetting the CPU. All internal registers states
are set to default value. The F_Synch_CPU_JTAG is synchronizing the CPU and JTAG on
fly. The CPU is stopped, but all registers have not been modified.

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT X F_Set PC_and RUN(INT_X xram en, INT X PC_address);
Parameters:
Xram_en - 0 —> run program located in Flash
- 1 -> run program located in XRAM
address - set Program Counter to address and run

Return value:

Target devices result mask - 0x00 to Ox3F
When bit is “1' - TRUE
‘0' - FALSE

F_Copy_MCU_Data_to_Buffer

F_Copy_MCU_Data_to_Buffer - Get the MCU status or device ID/silicon version and
save result in the Gang Buffer. Use the function
F_Get_MCU_Data_from_Buffer(..) To get result
from desired target.

VALID FPA index -(1to8) or0 (ALL FPAs) executed sequentially.

INT X MSPPRG_API F_Copy_MCU_Data_to_Buffer(INT_X Type);
Parameters:
Type: GET_MCU_ID (1)
Result

Higher byte (bits 15:8) MCU ID

Remote Control Programming User’s Guide PMO025A02 Rev.2 92

0x01 - CC1110F8

0x85 — CC2430F64
0x89 — CC2431F32
0x81 - CC2510F8
0x91 - CC2511F8
Lower byte (bits 15:8) Silicon version ID
GET_MCU_STATUS (2)
Result one byte
0x80 — Chip Erase Done
0x40 - PCON Idle
0x20 - CPU halted
0x10 - Power Mode 0
0x08 - Halt Status
0x04 - Debug Locked
0x02 - Oscillator stable
0x01 - Stack overflow
Return value:
Target devices result mask - 0x00 to Ox3F
When bit is ‘1' - TRUE
‘0" — FALSE

F_Get_ MCU_Data_from_Buffer

F_Get_MCU_Data_from_Buffer - Get the latest result created by the function
F_Copy_MCU_Data_to_Buffer();

VALID FPA index -(1to8)

INT X MSPPRG_API F_Get_MCU_Data_from Buffer(BYTE target_no);

Parameters value:
target_no - 1 to 6

Return value:
data from the MCU buffer.

Remote Control Programming User’s Guide PMO025A02 Rev.2 93

Appendix A

GangPro-CC Command Line interpreter

The Multi-FPA API-DLL can be used with the command line interpreter shell. This shell allows to
use the standard Command Prompt windows or script file to execute the API-DLL functions. All
required files are located in the directory

C:\Program Files\Elprotronic\CCxx\USB GangPro-CC\CMD-line
and contains

GP-CC-commandline.exe -> command line shell interpreter
GangProCC-FPAsel.dll -> standard API-DLL files
GangProCC-FPA1.dll e e

All API-DLL files should be located in the same directory where the GP-CC-commandline.exe is
located. To start the command line interpreter, the GP-CC-commandline.exe should be executed.

Command Syntax:

instruction_name (parameterl, parameter2,)

parameter:
1. string (file name etc.) - "filename"
2. numbers
integer decimal eg. 24
or integer hex eg. 0x18

Note: Spaces are ignored
Instructions are not case sensitive
F_OpenlnstancesAndFPAs('"*# *'")
and f_openinstancesandfpas('""*# *'')
are the same.

Example-1:

Remote Control Programming User’s Guide PMO025A02 Rev.2 94

Run the GP-CC-commandline.exe
Type:
F_OpenlnstancesAndFPAs("'*# *'") // open instances and find the first adapter (any SN)
Press ENTER -result->1 (OK)
Type:
F_Initialization() //initialization with config taken from the config.ini
//setup taken from the GangPro-CC - with defined CCxx type, code file etc.
Press ENTER -result->1 (OK)
Type:
F_AutoProgram(0)
Press ENTER - result ->3 (3->0000 0011 -> programmed two targets -> OK)
Type:
F_Report_Message()
Press ENTER - result -> displayed the last report message (from the F_Autoprogram(0))

See figure A-1 for result:
Type quit() and press ENTER to close the GP-CC-commandline.exe program.

I C:\Elprotronici,Project’,Cpp-Chipcon' GangProCC-Comn

This iz a command line function call demo.
» f_openinstancesandfpas ("=l =)
1

> f_initialization<?

» F_Autoprogramc@)
3

> F_report_message()
== Auto Program ===

Z2o0C communication initialization....
Erazing memory
So0C communication initialization....
Uzed Memory Blank checking....
Flaszsh programming
Uerifying check sum
OME — € run time ?.1 sec.)

Figure A-1

Remote Control Programming User’s Guide PMO025A02 Rev.2 95

Example-2:
Run the GP-CC-commandline.exe and type the following commands:

F_OpenlnstancesAndFPAs("*# *") // open instances and find the first adapter (any SN)
F_Initialization()

F_Report_Message()

F_ConfigFileLoad("filename") //put vaild path and config file name
F_ReadCodeFile(1, "FileName") //put vaild path and code file name (TLtxt format)
F_AutoProgram(0)

F_Report_Message()

F_Put_Byte_to_Gang_Buffer(1, 0x8000, 0x11)
F_Put_Byte_to_Gang_Buffer(1, 0x8001, 0x21)
F_Put_Byte_to_Gang_Buffer(1, 0x801F, 0xA6)
F_Open_Target_Device()

F_Segment_Erase(0x8000)
F_Copy_Buffer_to_Flash(0x8000, 0x20)
F_Copy_Flash_to_Gang_Buffer(0x8000, 0x20)
F_Get_Byte_from_Gang_Buffer(1, 0x8000)
F_Get_Byte_from_Gang_Buffer(2, 0x8000)
F_Get_Byte_from_Gang_Buffer(1, 0x8001)
F_Get_Byte_from_Gang_Buffer(2, 0x8001)
F_Get_Byte_from_Gang_Buffer(1, 0x801F)
F_Get_Byte_from_Gang_Buffer(2, 0x801F)
F_Close_Target_Device()

quit()

Remote Control Programming User’s Guide PMO025A02 Rev.2 96

List of command line instructions

quit() ;close the command interpreter program
help() ;display list below
F_Trace_ON()

F_Trace_OFF()

F_Openlnstances(no)

F_Closelnstances()

F_OpenlnstancesAndFPAs("FileName")
F_Set_FPA_index(fpa)

F_Get_FPA_index()

F_LastStatus(fpa)

F_DLLTypeVer()

F_Multi_DLLTypeVer()
F_Check_FPA_access(index)

F_Get_FPA_SN(fpa)

F_APIDLL_Directory("APIDLLpath")
F_Initialization()

F_DispSetup()

F_Close_All()

F_Power_Target(OnOff)

F_Reset_Target()

F_Report_Message()

F_ReadCodeFile(file_format, "FileName")
F_Get_CodeCS(dest)

F_ReadPasswFile(file_format, "FileName")
F_ConfigFileLoad("filename")

F_SetConfig(index, data)

F_GetConfig(index)

F_Put_Byte_to_Gang_Buffer(target_no, addr, data)
F_Get_Byte_from_Gang_Buffer(target_no, addr)
F_ClIr_Code_Buffer()

F_Put_Byte_to_Code_Buffer(addr, data)
F_Put_IEEEAddr64_to_Gang_Buffer(target_no, "Hex data string")
F_Get_IEEEAddr64_from_Gang_Buffer(target_no)
F_Get_Lock_Bits(target_no)

Remote Control Programming User’s Guide PMO025A02 Rev.2

F_AutoProgram(0)

F_Verify_Lock_Bits()

F_Memory_Erase(mode)
F_Memory_Blank_Check()

F_Memory_Write(mode)

F_Memory_Verify(mode)

F_Gang_Flash_Read()

F_Write_IEEE_Address()

F_Read_IEEE_Address()

F_Open_Target_Device()
F_Close_Target_Device()

F_Segment_Erase(address)
F_Sectors_Blank_Check(start_addr, stop_addr)
F_Copy_Buffer_to_Flash(start_addr, size)
F_Copy_Gang_Buffer_to_Flash(start_addr, size)
F_Flash_to_Gang_Buffer(start_addr, size)
F_Write_Lock_Bits()

F_Write_Byte_to_XRAM(addr, data)
F_Write_Byte_to_direct_ RAM(addr, data)
F_Copy_Buffer_to_XRAM(start_addr, size)
F_Copy_Gang_Buffer_to_XRAM(start_addr, size)
F_Copy_XRAM_to_Gang_Buffer(start_addr, size)
F_Copy_Buffer_to_direct_ RAM(start_addr, size)
F_Copy_Gang_Buffer_to_direct_ RAM(start_addr, size)
F_Copy_direct_ RAM_to_Gang_Buffer(start_addr, size)
F_Set_ PC_and_RUN(xram_en, PC_addr)
F_Copy_MCU_Data_to_Buffer(type)
F_Get_MCU_Data_from_Buffer(target_no)
F_Get_Targets_Vcc()

F_Get_Targets_Result()
F_Get_Active_Targets_Mask()
F_Disable_FPA_index(fpa)
F_Enable_FPA_index(fpa)

See chapter 4 for detailed description of the instructions listed above.

Remote Control Programming User’s Guide PMO025A02 Rev.2

Note: Not all instructions listed in the chapter 4 are implemented in the command line
interpreter. For example - all instructions uses pointers are not implemented, however
this is not limiting the access to all features of the API-DLLs, because all instructions

uses pointers are implemented also in the simpler way without pointers.

Remote Control Programming User’s Guide PMO025A02 Rev.2 99

