

GangPro430

USB-MSP430 Gang Flash Programmer

User’s Manual
Software version 4.91

 PM015A01 Rev.16

 06-October-2012

Elprotronic Inc.

16 Crossroads Drive

Richmond Hill,

Ontario, L4E-5C9

CANADA

Web site: www.elprotronic.com

E-mail: info@elprotronic.com

Fax: 905-780-2414

Voice: 905-780-5789

Copyright © Elprotronic Inc. All rights reserved.

Disclaimer:

No part of this document may be reproduced without the prior written consent of Elprotronic Inc.

The information in this document is subject to change without notice and does not represent a

commitment on any part of Elprotronic Inc. While the information contained herein is assumed to

be accurate, Elprotronic Inc. assumes no responsibility for any errors or omissions.

In no event shall Elprotronic Inc, its employees or authors of this document be liable for special,

direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claims for lost

profits, fees, or expenses of any nature or kind.

The software described in this document is furnished under a licence and may only be used or copied

in accordance with the terms of such a licence.

Disclaimer of warranties: You agree that Elprotronic Inc. has made no express warranties to You

regarding the software, hardware, firmware and related documentation. The software, hardware,

firmware and related documentation being provided to You “AS IS” without warranty or support

of any kind. Elprotronic Inc. disclaims all warranties with regard to the software, express or implied,

including, without limitation, any implied warranties of fitness for a particular purpose,

merchantability, merchantable quality or noninfringement of third-party rights.

Limit of liability: In no event will Elprotronic Inc. be liable to you for any loss of use, interruption

of business, or any direct, indirect, special incidental or consequential damages of any kind

(including lost profits) regardless of the form of action whether in contract, tort (including

negligence), strict product liability or otherwise, even if Elprotronic Inc. has been advised of the

possibility of such damages.

2

END USER LICENSE AGREEMENT

PLEASE READ THIS DOCUMENT CAREFULLY BEFORE USING THE SOFTWARE AND

THE ASSOCIATED HARDWARE. ELPROTRONIC INC. AND/OR ITS SUBSIDIARIES

(“ELPROTRONIC”) IS WILLING TO LICENSE THE SOFTWARE TO YOU AS AN

INDIVIDUAL, THE COMPANY, OR LEGAL ENTITY THAT WILL BE USING THE

SOFTWARE (REFERENCED BELOW AS “YOU” OR “YOUR”) ONLY ON THE CONDITION

THAT YOU AGREE TO ALL TERMS OF THIS LICENSE AGREEMENT. THIS IS A LEGAL

AND ENFORCABLE CONTRACT BETWEEN YOU AND ELPROTRONIC. BY OPENING THIS

PACKAGE, BREAKING THE SEAL, CLICKING “I AGREE” BUTTON OR OTHERWISE

INDICATING ASSENT ELECTRONICALLY, OR LOADING THE SOFTWARE YOU AGREE

TO THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO

THESE TERMS AND CONDITIONS, CLICK ON THE “I DO NOT AGREE” BUTTON OR

OTHERWISE INDICATE REFUSAL, MAKE NO FURTHER USE OF THE FULL PRODUCT

AND RETURN IT WITH THE PROOF OF PURCHASE TO THE DEALER FROM WHOM IT

WAS ACQUIRED WITHIN THIRTY (30) DAYS OF PURCHASE AND YOUR MONEY WILL

BE REFUNDED.

1. License.

The software, firmware and related documentation (collectively the “Product”) is the property of

Elprotronic or its licensors and is protected by copyright law. While Elprotronic continues to own

the Product, You will have certain rights to use the Product after Your acceptance of this license.

This license governs any releases, revisions, or enhancements to the Product that Elprotronic may

furnish to You. Your rights and obligations with respect to the use of this Product are as follows:

YOU MAY:

A. use this Product on many computers;

B. make one copy of the software for archival purposes, or copy the software onto the hard disk

of Your computer and retain the original for archival purposes;

C. use the software on a network

YOU MAY NOT:

A. sublicense, reverse engineer, decompile, disassemble, modify, translate, make any attempt

to discover the Source Code of the Product; or create derivative works from the Product;

B. redistribute, in whole or in part, any part of the software component of this Product;

3

C. use this software with a programming adapter (hardware) that is not a product of

Elprotronic Inc.

2. Copyright

All rights, title, and copyrights in and to the Product and any copies of the Product are owned by

Elprotronic. The Product is protected by copyright laws and international treaty provisions.

Therefore, you must treat the Product like any other copyrighted material.

3. Limitation of liability.

In no event shall Elprotronic be liable to you for any loss of use, interruption of business, or any

direct, indirect, special, incidental or consequential damages of any kind (including lost profits)

regardless of the form of action whether in contract, tort (including negligence), strict product

liability or otherwise, even if Elprotronic has been advised of the possibility of such damages.

4. DISCLAIMER OF WARRANTIES.

You agree that Elprotronic has made no express warranties to You regarding the software, hardware,

firmware and related documentation. The software, hardware, firmware and related documentation

being provided to You “AS IS” without warranty or support of any kind. Elprotronic disclaims all

warranties with regard to the software and hardware, express or implied, including, without

limitation, any implied warranties of fitness for a particular purpose, merchantability, merchantable

quality or noninfringement of third-party rights.

4

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital devices,

pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful

interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy

and, if not installed and used in accordance with the instruction manual, may cause harmful interference to

radio communications. However, there is no guarantee that interference will not occur in a particular

installation. If this equipment does cause harmful interference to radio or television reception, which can be

determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one

of more of the following measures:

* Reorient or relocate the receiving antenna

* Increase the separation between the equipment and receiver

* Connect the equipment into an outlet on a circuit different from that to which the receiver is connected

* Consult the dealer or an experienced radio/TV technician for help.

Warning: Changes or modifications not expressly approved by Elprotronic Inc. could void the user’s authority

to operate the equipment.

This device complies with Part 15 of the FCC Rules.

Operation is subject to the following two conditions:

(1) this device may not cause harmful interference and

(2) this device must accept any interference received,

 including interference that may cause undesired

 operation.

This Class B digital apparatus meets all requirements of the Canadian

Interference-Causing Equipment Regulations.

Cet appereil numerique de la classe B respecte toutes les exigences du

Reglement sur le material brouilleur du Canada.

5

Table of Contents

1. Introduction . 9

2. Features . 11

2.1 Customized features . 12

2.1.1 Encrypted Project option . 12

2.1.2 Script file . 12

2.1.3 DLLs . 13

3. Getting Started . 14

3.1 Software Installation . 14

Driver Installation . 14

3.2 Hardware Setup . 16

3.3 Starting up “GangPro430" Flash Programmer . 16

3.4 X-Pro430 Selector . 17

4. Programming Dialogue Screen . 19

4.1 Microcontroller Type . 20

4.2 Code File Management . 22

4.3 Blow Security Fuse and Open Password File . 25

4.4 Power Device from Adapter . 29

4.5 Target Device selector and action result . 30

4.6 Device Action box . 31

4.6.1 Auto Program button . 32

4.6.2 Verify Security Fuse . 32

4.6.3 Erase Flash button . 33

4.6.4 Blank Check button . 33

4.6.5 Write Flash button . 34

4.6.6 Verify Flash button . 34

4.6.7 Read/ Copy Flash button . 35

4.7 Next button . 37

5. Data viewers . 38

6. Memory Option Dialogue Screen . 40

6.1 Memory Erase/Write/Verify Group . 41

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 6

6.2 Retain Data in Flash . 42

6.3 DCO constants verification . 43

6.4 Read Group . 43

6.5 Verification Group . 44

6.6 Write/Read the BSL Flash sectors in the F5xx/F6xx MCUs 45

7. Adapter Options . 47

7.1 JTAG/SBW/BSL Communication Dialogue Box . 47

7.1.1 Communication Interface . 47

7.1.2 JTAG Communication Speed . 48

7.1.3 BSL Communication Speed . 48

7.1.4 Spy-Bi-Wire Communication Speed . 48

7.2 Reset Dialogue Box . 49

7.2.1 Reset pulse duration . 49

7.2.2 Final Target Device action . 50

7.3 Preference Dialogue Box . 51

8. Serialization . 53

8.1 Introduction . 53

8.2 Serialization Dialogue Screen . 54

8.2.1 Serial number File . 55

8.2.2 Serial number formats . 55

8.2.3 Model, Group, Revision . 64

8.2.4 Device Serialization box . 64

8.3 Serialization Report Dialogue Screen . 66

8.4 SN data file . 66

9. Check Sum Options . 71

9.1 Check Sum types . 74

11. DCO calibration . 81

12. Script File - defined programming sequence . 84

12.1 Script button . 84

12.2 Script file option . 85

12.3 Script commands . 86

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 7

13. Project and Configuration Load / Save . 93

13.1 Load / Save Setup . 93

13.2 Load / Save Project . 93

13.3 Commands combined with the executable file . 97

14. Target connection . 101

Appendix A - specification . 110

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 8

1. Introduction

GangPro430 programmer is dedicated to simultaneously program up to six the Texas

Instruments MSP430Fxx family microcontrollers. Using GangPro430 programmer the target

devices can be programmed via JTAG, SBW (Spy-Bi-Wire) or BSL (Boot Strap Loader) Interface.

Each programmer package consist of a microcontroller based adapter (Figure 1-1),

WindowsTM based software and cable to connect the adapter with the computer’s USB port. The

internal adapter software allows to communicate with the programmed device with the high speed.

The effective programming speed is

around 12 kbytes/s simultaneously up to

six target devices that is equivalent to 72

kbytes/s programming speed per one

programmed target device. Due to this

h i g h s p e e d c o m m u n i c a t i o n ,

programming time is very short and

programmer can be used to program

flash devices in the production process.

For example, six microcontrollers with

60 kB Flash, such as MSP430F149, can

be programmed in 8 seconds. This time

includes initialization, erasing memory,

blank checking, programming and fast

verification.

The Gang Splitter (Figure 1-2)

(sold separately) allows to connect up

to six target devices to one Gang

Programming Adapter. Communication

via JTAG, Spy-Bi-Wire or BSL is

provided in the same Gang Splitter..

To simplify production process the programming software package can assign serials

number, model type, and revision. Each serial number is unique for each programmed device and

is assigned automatically. Several serial number formats are available.

Figure 1-1

Figure 1-2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 9

There are a number of erase/write options also available. This allows to erase/write all flash

memory, or just the specified fragment of memory. This feature is very useful when only part of

programmed data/code should be replaced. For example this feature can be used to download the

serial number, calibration data or personality data without losing existing program code.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 10

2. Features

GangPro430 programmer is dedicated to simultaneously program up to six the Texas

Instruments MSP430Fxx family microcontrollers via JTAG, SBW or BSL interface. Detailed

information describing features of the JTAG communication port can be found in the Texas

Instruments (TI) documentation - SLAA149 -“Programming a Flash-Based MSP430 Using the

JTAG Interface”.

To facilitate high speed communication via the JTAG port, an application software for the

programming adapter has been optimized for the maximum speed. Also a few new procedures have

been implemented, decreasing the flash programming time.

When the BSL Interface is used, then the GangPro430 programmer is using the standard

BSL communication port, available on all MSP430 microcontrollers. Detailed information

describing features of the standard BSL can be found in the Texas Instruments (TI) documentation

- SLAA089A -“Features of the MSP430 Bootstrap Loader”.

To facilitate high speed communication a new Fast Bootstrap Loader (Fast BSL) (proprietary

of Elprotronic Inc.) is temporary downloaded to the RAM of each programmed device.

Major features of the GangPro430 programmer are:

* Support all MSP430Fxx microcontrollers from TI.

* Programming speed via JTAG interface is approximately 12 kBytes/s simultaneously up to

six target devices that is equivalent to 72 kbytes/s programming speed per one programmed

target device,

* Programming speed via BSL interface is 9.6 kbits/s (BSL) and 150 kbits/s (Fast BSL).

* Our programmers are professionally made and are recommended by Texas Instruments

as the Third Party Tools source.

* Our programmers are currently the fastest programmers on the market.

* Blow the JTAG security fuse capability.

* Full memory or sector memory erase capability.

* Write Check Sum verification.

* No code size limitations.

* Target device can be powered from the programming adapter or from external source.

* Easy to use WindowsTM based software.

* Programmer accept TI (*.txt), Motorola (*.s19) and Intel (*.hex) data files for programming.

* Combine code files capability.

* Lock setup capability, useful in production.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 11

* Software package can assign and automatically increment serial number, model type and

revision. Serial Number with or without an automatically inserted current date can be stored

in the FLASH memory in HEX, BCD or ASCII format. Log file capability allowing to

review information about the flashed target devices.

* DLL software package can control programmer from other programs.

* Programmer has been fully tested to comply with the FCC and CE requirements.

* Uses USB-1.1 (12Mbits/s) Port to communicate with the Programming Adapter.

2.1 Customized features

GangPro430 programmer can be controlled from external software or programming

sequences can be customized. These features are very useful in production environment. Standard

programming software GangPro430 has a lot of options described above, but of course it can not

cover all customer’s requirements.

2.1.1 Encrypted Project option

Contents of the project that include code contents downloaded to target device can be

encrypted and blocked against unauthorised access.

2.1.2 Script file

To extend programming features programming software supports user defined programming

sequences saved in the script file. That easy method can be created by any user without knowing

programming languages and techniques. Programming sequence up to 1000 lines can be created. All

lines contains sequence of the pressed buttons with extra few condition options. This programming

method is described in chapter 10 on this manual. Script file option is not available in lite software

version.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 12

2.1.3 DLLs

When the customized programming sequence is not covering customer’s requirements, then

an attached to software package DLLs can be used. DLLs allows to fully control programming

adapter from external software written in MS Visual C++, MS Visual Basic, LABView, DOS or

other programming packages like Borland C++ etc. See “GangPro430 FlashProgrammer - Remote

Control Programming User’s Guide” for details.

2.1.4 Self Test Program

Software package contains the Self Test program, that allows to check the adapter, target

device and connection functionality. The Self Test program uses the API-DLL for communication

between Self Test Program and hardware. See Appendix B in this manual for details.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 13

3. Getting Started

GangPro430 programmer package contains:

1. One READ ME FIRST document.

2. One X-Pro430 - USB-MSP430 Flash Programmer CD ROM (Software + Manual).

3. One GangPro430 Flash Programming Adapter.

4. One 6 feets length USB-A to USB-B cable.

3.1 Software Installation

The X-Pro430 USB MSP430 Flash Programming Software runs on PC under Windows TM ME,

WinNT, 2000 or XP. Follow instructions below to install the software:

1. Insert X-Pro430 (the USB MSP430 Flash Programming) Software CD into your CD-ROM

drive.

2. The X-Pro430 Setup wizard appears automatically. Click Install X-Pro430 Programmer to

begin the installation process.

3. If the Setup wizard does not start automatically, click the Start button and choose the Run

dialogue box. Type “D:\SETUP.EXE”, where D represents the drive letter of your CD-ROM

drive. Then click the OK button.

4. Once the installation program starts, on-screen instructions will guide you through the

remainder of the installation. You must accept licence agreement before using software.

Driver Installation

Software installation program is placing the USB driver files in the windows directories

Windows\inf

 and

 Windows\system32\drivers

that simplified driver installation. When the software package mentioned above starts, the following

screen will pop-up (see figure 3.1-1).

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 14

Select - InstallUSB-FPA Driver..... option if the driver was not installed before. When the

installation software is finished, then the USB driver is preinstalled. Driver preinstallation can also

be executed by running the USB-FPA-DriverInstaller.exe software located in directory

C:\Program Files\Elprotronic\Drivers USB-FPA\XP,Vista,Win-7

When the driver preinstallation is done then plug-in USB-FPA adapter to USB- PC port. The driver

installation should be done automatically in Win-7 64, and in the Win 32 OS (XP, Vista, Win7 32b)

the wizard should start. Follow instruction in wizad by pressing “recomended” option buttons and

all should be done.

See USB-FPA Driver Installation.pdf document located in

C:\Program Files\Elprotronic\Drivers USB-FPAdirectory if you find any problems.

Figure 3.1-1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 15

3.2 Hardware Setup

Figure 3.2-1 show connection between PC, GangPro430 adapter, Gang Splitter and target devices.

1. Connect the GangPro430 adapter (USB-MSP430-FPA-GANG) to the PC USB Port, using

provided cable extender (USB-A to USB-B).

2. Plug in socket connector from the GangPro430 Adapter to the JTAG (for communication via

JTAG/SBW) or BSL (for communication via BSL)) connector of the Gang Splitter and from

the Gang Splitter connector #1 to #6 to on your device boards. Make sure that pin 1 on your

device board’s header is connected to pin 1 of the socket connector. Pin 1 is marked as a red

cable on the ribbon cable.

3.3 Starting up “GangPro430" Flash Programmer

To start the GangPro430 Flash Programmer click on the GangPro430 Elprotronic icon.

Once started the software will attempt to access the programming adapter. If no error messages

appear then the software has initialized without a problem and you may begin using it. However, if

the programming adapter is not detected an error message will appear. To correct the problem, make

sure that the connection cable is properly attached and the USB driver is installed.

Figure 3.2-1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 16

3.4 X-Pro430 Selector

The X-Pro430 (FlashPro430, ChainPro430 and GangPro430) has Multi-USB feature. Up to 8

Flash Programming Adapters can be connected to one PC. Each adapter can be controlled by one

opened software application. Up to eight application software can be opened at the same time. Each

application software can have independent setup from the other application software setup (code file,

controlled microcontroller type etc.)

When more then one X-Pro430 Adapter is connected to PC then following X-Pro430 Selector

dialogue screen will be displayed on the PC screen (see Figure 3.4-1). Using available buttons the

one desired Flash Programming Adapter should be selected. Make a sure, that selected X-Pro430

is not used by other opened application.

Selected X-Pro430’s serial number will be displayed on the left bottom side of the programming

dialogue screen.

Figure 3.3-1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 17

Figure 3.4-1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 18

Figure 4-1. Programming dialogue box screen.

4. Programming Dialogue Screen

The programming dialogue box (see Fig. 4-1.) contains a pull down menu, interface selection

box, blow fuse box, device action buttons, report (status) window, open file buttons, processor

information box, serial number box, power DC status and check sum result boxes.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 19

Figure 4.1-1

All device action buttons, power ON/OFF button and the check sum result box have their

own status indicators. Each indicator can assume any of the following conditions:

 - blank - idle status.

 - yellow - Test in progress. For power on/off - DC voltage is correct.

 - green - access enabled.

 - red sign - access denied. For power on/off - DC voltage is too low (below 2.6V)

 - device action has been finished successfully.

 - device action has been finished, but result failed.

 - applies to blank check only - Memory is not clean, but the specified memory segment is.

4.1 Microcontroller Type

The microcontroller type can be selected from the pull down

field of the processor type group. The pull down field contains a list of

all microcontrollers in MSP430Fxx family currently available.

When communication between microcontroller and

programming adapter is initialized, the software will detect the target

microcontroller’s automatically. The type of detected microcontroller

is displayed in the field ‘Target:’. This allows the software to warn you

if the connected microcontroller does not match the one specified by the

user.

Texas Instruments has been created number of microcontroller’s

groups and numbers of the microcontroller’s type. Microcontrollers

with the same group has the same ID number saved in the ROM at the

location 0x0FF0. Microcontrollers with the same group ID has a similar

features with a different size of RAM and FLASH.

Contents of the ROM at location 0x0FF0 containing ID number

can be read using JTAG/SBW or BSL communication. Particular type

of the microcontroller in the same group ID can be detected when

communication via JTAG/SBW is available, but this feature is not

available via BSL interface communication. For programming flash feature knowledge of the type

of the microcontrollers is not required al long as size of FLASH is available.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 20

In the example the four groups of microcontrollers are shown below. Tables contains

following information:

- in [F112] - ID (in HEX format) taken from the ROM at location 0x0FF0,

- F11x(1) - information displayed in the microcontroller type window in programmer dialogue box,

- list of available microcontrollers in particular group with RAM and Flash size specification.

 [F112] F11x(1)

Name RAM size [bytes] ROM size [kbytes]

MSP430F110

MSP430F1101

MSP430F1101A

MSP430F1111A

MSP430F112

MSP430F1121

MSP430F1121A

128

128

128

128

256

256

256

1 k

1 k

1 k

2 k

4 k

4 k

4 k

 [1132] F11x2

Name RAM size [bytes] ROM size [kbytes]

MSP430F1122

MSP430F1132

256

256

4 k

8 k

 [F123] F122..F123

Name RAM size [bytes] ROM size [kbytes]

MSP430F122

MSP430F123

256

256

4 k

8 k

 [F149] F13x..F14x

Name RAM size [bytes] ROM size [kbytes]

MSP430F133

MSP430F135

MSP430F147

MSP430F1471

MSP430F148

MSP430F1481

MSP430F149

MSP430F1491

256

512

1024

1024

2048

2048

2048

2048

8 k

16 k

32 k

32 k

48 k

48 k

60 k

60 k

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 21

When ‘Any’ microcontroller type is selected then only name of the microcontroller’s group

like F13x..F14x is displayed in the Target microcontroller type. Because type of microcontroller

can not be fully detected (especially via BSL Interface) then the max. FLASH from the particular

group is assigned, eg. 60kB for the group F13x..F14x (see table above). If the correct size of the

FLASH is required then the desired microcontroller type should be selected. When communication

with the target device is established and when the selected and the target microcontrollers are from

the same group, then a size of the target device are taken from the selected microcontroller type data

table. In this case the full name of the microcontroller’s is displayed in the Target microcontroller

type field like MSP430F149 instead the group name F13x..F14x only. Otherwise the

microcontroller with the maximum size of FLASH from the detected group is selected (shown in

bold in the tables above) and group name is displayed like F13x..F14x.

4.2 Code File Management

GangPro430 flash programmer provides a few options to manage code files. These options

allow the user to open a code file, combine several code files into a single file, and save the

programming data into a code file. Following code formats are supplied - Texas Instruments *.txt,

TI’s Code Composer Essentials *.out, Intel *.hex, Motorola *.s19, *.s28, *.s37, IAR UBROF-9

*.d43 and IAR debug (Intel or Motorola) *.a43 formats. When the TI’s CCE file is used then the

path for the TI’s hex430.exe file should be specified. See Preferences dialog for details.

Figure 4.2-1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 22

The Open Code File button, or the Open Code File from the FILE pull down menu, prompts

for opening the object file that contains the code data, as shown in Figure 4.2-1. When the file is

selected the contents of the object file are downloaded into the PC memory. If the selected

microcontroller does not have enough memory to fit the data contained in the code file, the warning

message in Figure 4.2-2 will be displayed.

When code file is open and read successfully the code file name and full path will be

displayed on the right side of the Open Code File button (see Fig.4-1 Programming dialogue box

screen). Check sum calculated from the code file will be displayed in the “Check sum - Source”

window. Contents of the selected file can be viewed by the selecting of ‘Code File Data’ from the

‘View’ menu (see chapter 5).

The Combine Code Files option allows up to 40 code files to be loaded into the PC memory.

When this option is selected the programmer will create a new data block, which will contain the

combined data of the user selected files. In order to add a code file to the newly created data block,

the user needs to press the ADD Code File button. The programmer will then prompt the user to

specify the code file to be appended to the newly created memory block, using the window in Figure

4.3-1. Every appended file will be verified, so that the total code size does not exceed the target

microcontroller’s memory space and that there is no overlap with previously selected code segments.

After the addition of each file the window in Figure 4.2-3 will be shown. The window shows the

status of previous append operations.

The Programmer is also able to append files of any type to the new data block. In order to

do this the user must specify the memory location into which the programmer is to load the file and

then press the Add file contents button. The window in Figure 4.3-1 will appear prompting the user

to specify the file to be added. Once the file is added to the new memory block, the programmer will

Figure 4.2-2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 23

display the memory space occupied by the selected file. An example of this is shown in Figure 4.2-3

for the file number 4.

The Save Code File option saves the data currently contained within the PC code data block

into a code file. When the user selects this option from the File menu, the window in Figure 4.2-4

will appear, prompting for the name of the file to be created.

All of the aforementioned Code File options work with three most popular code file formats.

These formats are the Texas Instruments, the Motorola and the Intel file formats. FlashPro430 will

work with any of these formats and will easily convert one file format to another by using the Open

Code File and Save Code File options.

Figure 4.2-3

Figure 4.2-4

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 24

4.3 Blow Security Fuse and Open Password File

The microcontroller’s memory is protected against unauthorized access. When the

microcontroller is accessed via the JTAG/SBW interface, then the Security Fuse if blown is

protecting access to the microcontroller. Blowing the Security Fuse is not reversible and when done,

then the JTAG/SBW interface becomes unusable.

When JTAG/SBW interface is selected, then ‘Verify Security Fuse’ button allows to

verification, if the fuse is blown or not. Fuse is verified also at the beginning of any device action

command.

To blow the Security Fuse the check mark ‘Enable’ must be selected first (see Figure 4.3-1).

Because blowing of the Security Fuse is not reversible, the following warning message is displayed

when check mark is selected to be enabled.

Note: If the option of blowing the Security Fuse is enabled, then if AUTO PROGRAM device action

is selected, the fuse will be blown without warning.

When ‘BLOW FUSE’ button is pressed, then two following warnings are displayed, before fuse will

be blown.

Figure 4.3-1

Figure 4.3-2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 25

When the button ‘YES’ is pressed twice, the procedure of blowing the security fuse will be initiated.

When Security Fuse is blown, the JTAG/SBW interface becomes inoperable.

TI prepared the second access to the MSP430 microcontroller via the BSL interface. This

access is available any time, even if the Security Fuse is blown. To access the microcontroller via

the BSL interface a valid password must be provided. The password consists of 32 bytes of code at

location 0xFFE0-0xFFFF for the F1xx, F2xx andF4xx, and 16 bytes of code at location 0xFFF0-

0xFFFF for the F5xx MCU. If the correct password is not provided, access to the microcontroller

via BSL is limited to two commands - erase all memory and verify password. All other commands

are unavailable. When password is not known, then the all memory can be erased and a new

password (all 0xFF) can unlock access to all BSL commands.

The software supports three types of passwords. The first password, or default, is used when

the flash memory is blank, ie. all bytes contain value 0xFF. Consequently, the password contains 32

bytes of 0xFF.

Figure 4.3-3

Figure 4.3-4

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 26

Figure 4.3-5

 The second password is provided by using the Open Password File button, or Open

Password File from the FILE menu. This command opens the code file and retrieves 32 bytes of

data that contain the password. Using this password allows the code in the flash memory to be

modified.

The third password comes from the code file itself. Whenever Open Code File command is

selected, data from the code file at the memory location 0xFFE0...0xFFFF is extracted for this

purpose. The password obtained this way enables verification of memory contents.

The use of a password file is optional. If a password file is not used, then the remaining two

passwords will be used. All three passwords can be viewed by selecting View\Device Passwords

selected from main menu (see Fig.4.3-5).

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 27

The three passwords are checked in sequence: from password file, from code file and default

at the end. The first valid password will be accepted. If all passwords fail the following error

message will appear:

When the F2xx or F4xx with BSL firmware version2.0 and higher are used then by default

the firmware allows to verify the BSL password only once. If the BSL password is wrong then the

whole contents of flash memory, including protected Info-A segment (with DCO calibration data)

could be erased. When that kind of microcontroller is selected then the following dialog screen

(Figure 4.3-7) is displayed that allows to select desired BSL password to be used first.

Figure 4.3-6

Figure 4.3-7

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 28

Figure 4.4-1

 If the first password failed to unlock the device then the default passwords will be used to

unlock the device. If that happened, then of course some application cannot use the MSP if the

application is using the DCO calibration content saved in the Info-A segment. The DCO calibration

data should be restored first. If the DCO calibration data are erased then the GangPro430 software

can recalibrate the DCO constants using access via JTAG or Spy-Bi-Wire. No extra hardware is

required. When the BSL interface is used then the DCO can be recalibrated by the FlashPro430

programmer. The DCO are calibrated with tolerance +/- 1% for desired frequency and the DCO

constants are saved in the flash memory. See chapter 6 for details how to make the setup for the

DCO recalibration.

The BSL firmware version 2.0 and higher allows to disable the feature that the memory is

erased when the password is incorrect and retry the BSL password again. If this option is used then

the Info-A segment will not be erased and the DCO constants would be saved. See the BSL

Password and Access - chapter 9 for details.

In the F5xx MCU the new BSL firmware is implemented with shorter password (16 bytes

only) and with fixed option that allows to try the password only once. If password is wrong then the

whole flash memory is erased including protected Info segments. It should be noticed that in the

F5xx all calibration data are not located in the regular flash location (info or main memory segments)

and all calibration data will not be erased.

4.4 Power Device from Adapter

The programming adapter is powered from the USB Port interface. Target device can be

powered from the programming adapter with voltage range from 2.2V to 3.6V in step 0.2V selected

in the voltage selector located in the ‘Power Device from Adapter” box.

Target device will be powered from the adapter, if check box ‘Enable’ in the ‘Power Device

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 29

from Adapter’ group (figure 4.4-1) is selected. When the ‘Enable’ checkbox is selected a warning

message shown in figure 4.4-2 will be displayed. If you confirm this selection by clicking YES, then

POWER ON/OFF button is enabled. By clicking POWER ON/OFF button you can turn the power

on or off on the target device. Current DC voltage on the target device is permanently monitored and

displayed in the ‘Device Voltage’ field in the ‘Power Device from Adapter’ group, even if the target

device is powered from the external DC sources. If DC voltage is higher then 2.7 V, then yellow box

will be displayed, indicating that DC voltage is OK and target device is fully functional under this

DC voltage. If DC level is below 2.7V, but higher then 1V, then access denied sign box will be

displayed (red sign with white line). If DC level is below 1V, then blank sign box will be displayed.

When the target device is powered from its own power supply or battery then the check box ‘Enable’

should not be selected.

RESET button located on the left side on the POWER ON/OFF button (Figure 4.1) can

generate reset pulse to the target device. Pressing this button the target devices can be reset manually

at any time, starting the target’s device application program from the beginning.

4.5 Target Device selector and action result

Figure 4.4-2

Figure 4.5-1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 30

 Figure 4.6-1

4.6 Device Action box

Device Action box contains 9 buttons (see Figure 4.6-1) Each

button allows a specific action to be executed. Software procedures related

to each action allow you to fully execute the desired task, without the need

to follow a specific sequence of actions. Every action starts by powering up

the target device, if Power Device from the Adapter is enabled. When the

DC voltage level becomes higher then 2.7V, the communication with the

target device is initiated via JTAG/SBW Interface. The security fuse is

verified, if access to the microcontroller is available. Once the specified

action is completed successfully the green check marks will appear (see

Figure 4.5-1). Also, the device will return to the state it was in before the

action was executed.

Progress of all actions is displayed in the report window. If the

particular action has been finished successfully, then message ‘done’ or

‘OK’ will appear on the right side of processed procedure (Fig.4.6.2). If

not, a message ‘failed’ will be displayed and selected action will be

terminated. Final status is also displayed in the Status window (see

Fig.4.6-3) as Active (blue), Pass (green), or Fail (red). On the bottom of

the programmer dialogue screen the progress bar is displayed and the total

run time is shown in the report window.

Run time does not include the time

when user interaction is required.

Figure 4.6-2

Figure 4.6-3

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 31

4.6.1 Auto Program button

Auto Program button is the most frequently used button when programming microcontrollers

in the production process. Auto Program button activates all required procedures to fully program

and verify the flash memory contents. Typically, when flash memory needs to be erased, Auto

Program executes the following procedures:

- reload code file when “Reload Code File” is selected

(useful for debugging when the code file is frequently modified)

- initialization

- read labelling information (Serial Number, Model, Group, Revision) (optional)

- erase flash memory,

- confirm if memory has been erase,

- flash programming and verification,

- labelling information generation,

- flash memory check sum verification,

- retrieve labelling information,

- blowing the security fuse (if enabled).

In the report window you can see a typical report message during the Auto Program

procedure (see Fig. 4.6-2).

Status window (see fig. 4.6-3) has a counter that is useful in production process. The total

number of programmed microcontrollers can be entered in the Total edit line. The Balance line

shows the number of microcontrollers that have not been programmed yet. The Balance counter is

initialized to the value entered in the Total edit line and is decremented every time Auto Program

is completed successfully.

Note: Balance counter works only with Auto Program procedure.

4.6.2 Verify Security Fuse

This button allows the security fuse or the password to be verified. This is useful, if you try

to find the correct password from a few available password files, or to check if the security fuse is

blown. This procedure is used for test purposes only.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 32

4.6.3 Erase Flash button

This button enables the flash memory segments, or mass (all) memory to be erased. If any

option other then ‘Erase All Memory’ is selected in the Memory Options Setup (see chapter 6.1

Memory Erase/Write/Verify Group for details), then the following question message box will be

displayed:

4.6.4 Blank Check button

When Blank Check button is clicked, the program checks if flash memory of the target

microcontroller is blank (all bytes contain the value 0xFF). This test checks if either all memory is

clean, or just the specified memory segment. The first test checks all memory contents. If it fails,

then just the specified memory segment is checked (see setup in Memory Erase/Write Group). The

following conditions can appear at the completion of this operation:

 - all memory is blank

 - all memory is not blank, but selected part of it is.

 - memory is not blank.

Figure 4.6.3-1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 33

4.6.5 Write Flash button

When write flash button is clicked, then contents from the code file will be written to the

flash memory.

Note: See chapter 5.1 Memory Erase/Write Group for details on how to specify memory segment

for writing.

When the second time target device is programmed, then the following warning message is displayed

4.6.6 Verify Flash button

The Verify Flash function compares the contents of the flash memory with data from the code

file. Verify flash function initiated this way will always use the standard memory verification

method, even if the fast verification method is selected from the memory write verification options

(see chapter 5. Memory Option Dialogue Screen).

Note: During the verification process either all memory or just the selected part of the memory is

verified, depending on settings specified in the Memory Erase/Write Address Range in the

Memory Options setup. See chapter 5.1 Memory Erase/Write Group for details.

Figure 4.6.5-1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 34

Figure 4.6.7-1

4.6.7 Read/ Copy Flash button

When ‘Read/Copy’ button is clicked, then data can be read from the target microcontroller

and displayed in the Flash Memory Data window (see Fig.4.6.7-1). This window can also be selected

from ‘Flash Memory Data’ from the ‘View’ menu. Flash memory data viewer, shown in figure

4.6.7-1, displays the code address on the left side, data in hex format in the central column, the same

data in Ascii format in the right column. The contents of the code viewer can be converted to Texas

Instruments *.txt file format by clicking on the ‘Convert to TI format’ button. Data will be viewed

in the Notepad Editor.

Read address range can be specified in the Memory Option screen. See chapter 5.2 Read

group for details.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 35

When the ‘Copy’ button is clicked, then the contents of the read target device memory will

be saved in the specified by user file name and opened as a current Code File. Also programmer

setup will be modified for the copy procedure. Especially the serialization will be disabled and the

‘All Memory’ option will be selected in the ‘Write/Erase/Verify Address Range’. Following

message will be displayed.

When the button ‘OK’ is pressed then programmer is ready to program the destination

microcontrollers.

Figure 4.6.7-2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 36

Figure 4.7-1

Figure 4.7-2

Figure 4.7-3

4.7 Next button

The ‘Next’ button is the dynamically programmable device action

button, which is very useful in production process. After opening the

program, ‘NEXT’ button is disabled (see Fig.4.7-1). When any button

from the Device Action group is pressed, then button ‘NEXT’ takes the

name and feature of that button. For example, if Auto Program button

has been used, then it’s name will be displayed on top of the ‘NEXT’

button (see Fig.4.7-2). From now the button ‘NEXT’ will perform the

same function as the Auto Program button. The ‘NEXT’ button has a

shortcut to function key F5. Button ‘NEXT’ will retain its functionality

until some other device key is clicked. For example, if key ‘READ

FLASH’ is clicked, then from this moment button ‘NEXT’ will take a

name and feature of the ‘READ FLASH’ button (see Fig.4.7-3). The

read flash procedure will be called, if button ‘NEXT’ or function key

F5 is pressed.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 37

Figure 5-1

5. Data viewers

Contents data from the Code file and from the Flash memory can be viewed in data viewers.

Also code data and flash memory data can be compared and differences between them can be

displayed.

Contents of the selected file can be viewed by selecting of the ‘Code File Data’ from the

‘View’ menu. Code data viewer, shown in figure 5-1, displays the code address on the left side, data

in hex format in the central column, the same data in Ascii format in the right column. Data in hex

format is displayed from 00 to FF when contents of data exist in the code file, otherwise it is

displayed as double dots ‘..’(if data does not exist in the code file) . When code size exceeds Flash

memory space of the selected microcontroller, then warning message

‘:== Data out of the Flash Memory Space of the selected MSP430. ==’

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 38

is displayed first.

The contents of the code viewer can be converted to Texas Instruments *.txt file format by

clicking on the ‘Convert to TI format’ button. Data will be viewed in the Notepad Editor.

Contents of the Flash Memory data can be viewed by selecting of the ‘Flash Memory Data’

from the ‘View’ menu. Flash Memory data viewer displays the memory address, data in hex and

Ascii format in the same way as the code data viewer (Figure 5-1 and 4.6.7-1). To be able to see

Flash Memory contents, ‘Read Flash’ option must be selected first.

Contents of the Code File data and Flash Memory Data can be compared and differences

displayed in a the viewer by selecting ‘Compare Code & Flash Data’ from the ‘View’ menu. Only

data that are not the same in the code file data and the Flash memory will be displayed. In the first

line code file data will be displayed, and in the second line - Flash memory data (Figure 5-2).

Note: Only data at the addresses specified in the code file can be displayed. Any data not specified

in code file will not be displayed, even if the Flash Memory data contains any not empty (FF) data.

Figure 5-2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 39

Figure 6-1

6. Memory Option Dialogue Screen

The Memory Options Dialogue Screen (Fig.6-1) has three settings groups and one

information group. Two of the settings groups allow the flash memory addresses range for erase,

write and read operation to be specified. The third settings group, write verification, allows the user

to select the verification method for Auto Program procedure. The information group contains the

start and stop address of the user specified main memory segment that can be erased, written and

verified independently.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 40

6.1 Memory Erase/Write/Verify Group

The Memory Erase/Write/Verify Address Range group block (see Fig.6-1) specifies common

addresses range for erase, write and verify operations. Memory setup has five available options:

1. Update only:

When this option is selected the Auto Program

procedure will not erase memory contents. Instead

Contents of the code data taken from the Code File

will be downloaded to the flash memory. This option

is useful when a relatively small amount of data, such

as calibration data, needs to be added to the flash

memory. Flash memory space defined by Code File

should be blank. Code file should contain ONLY data, which will be downloaded to flash

memory. For example, if code file contains only data as shown in figure 6.2 (in Texas

Instruments format) then 8 bytes of data will be written starting at location 0x1008 and 6

bytes of data starting at location 0x2200. Before writing operation, all data in the flash

memory at the specified location should be blank (contain value 0xFF). The software will

verify automatically if this part of memory is blank and will only proceed to program the

device if verification is successful.

Note: Addresses in the Code File should contain only EVEN addresses. Number of bytes in all data

blocks must be even. The software uses word (two bytes) operation for writing and reading

data. In case that the code file contains an odd number of bytes to write the data segment

will be appended by a single byte containing the value 0xFF. This value will not overwrite

the current memory contents, but verification process will return an error if the target device

does not contain the value 0xFF at that location.

2. All Memory

This is the most frequently used option during flash memory programming process. All

memory is erased before programming. All contents from the code file are downloaded to

the target microcontroller’s flash memory. When microcontroller contains INFO-A segment

that can be locked (eg in the MSP430F2xx series, contains DCO constants at locations

0x10F8 to 0x10FF), then the INFO-A can be erased or left unmodified. The “including

INFO-A in MSP430F2xx” should be selected on unselected respectively. When the INFO-A

is not erased, then none of the data will be saved in the INFO-A, even if the data are

specified in the code file. When any data should be downloaded to INFO-A segment, then

the “including INFO-A in MSP430F2xx” should be selected. The “DCO constants” in the

@1008

25 CA 80 40 39 E3 F8 02

@2200

48 35 59 72 AC B8

q

Figure 6.2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 41

“Retain Data in Flash” group should be selected, if the DCO constants should be restored

after erasing the INFO-A segment.

3. Main memory only

This option allows to erase and program the main memory only. Flash information memory

(segments A and B) will not be modified. Contents of the information memory from the code

file will be ignored, if code file contains such data.

4. Used by code file:

This option allows main memory segments or/and information memory segments, used by

data specified in code file, to be erased. Flash memory segments, which do not contain any

data to be written to the memory from the code file, will not be erased. This option is useful,

if some data, like calibration data, should pe replaced in memory. If code file contains some

new calibration data, such as described in figure 6.1-1, then the ENTIRE information

memory segment at addresses 0x1000 to 0x107F and main memory segment at addresses

0x2200 to 0x23FF will be erased and new data at locations 0x1008 and 0x2200 will be

written.

5. User Defined:

This option is functionally similar to options described before, but addresses range of the

erased/write/verify main memory and sectors of the information memory can be defined by

the user. When the User Defined option is selected, then on the right side of the Memory

Erase/Write/Verify Group two check boxes and two addresses edit lines will be enabled. The

check boxes allow the user to select the information memory sectors A, or/and B to be used

(erased, write, verified). Edit lines in the Main Memory group allow the user to specify the

main memory address range (start and stop addresses). Start address should specify the first

byte in the segment, and the stop address should specify the last byte in the segment. Since

the main memory segment size is 0x200, then the start address should be a multiple of

0x200, eg. 0x2200. The stop address should specify the last byte of the segment to be written.

Therefore, it should be greater than the start address and point to a byte that immediately

precedes a memory segment boundary, eg. 0x23FF or 0x55FF.

6.2 Retain Data in Flash

The MSP430F2xx series has the DCO constants saved in the INFO-A memory at addresses

0x10F8 to 0x10FF. However, when the info segment is erased, then the DCO constants will

be erased also. When the DCO Calibration Data box is selected in the Retain Data in

Flash group, then contents of the info memory at location 0x10F8 to 0x10FF is read before

erase process and contents of the original DCO constants (info at location 0x10F8 to

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 42

0x10FF) are restored after erasing process. The DCO constants are restored when the

ERASE or AUTOPROGRAM button is pressed.

User defined option in the Retain Data in Flash group allows to specify other region to be

restored after erasing the flash. This option can be used with any MSP430 microcontroller

type. Location of the retain data block is not limited and can be used at any part of flash -

info or main memory. Maximum size of the retain data block is limited to 256 bytes only.

Note: When the Retain data are selected (DCO constants or used defined), then the full blank check

will always failed, that of course is obvious. The selected block blank check related to the

code location must pass, otherwise program will be terminated.

6.3 DCO constants verification

In the MSP43-F2xx family the DCO is calibrated in factory and calibrated data for DCO

frequencies 1, 8, 12 and 16 MHz are saved in the INFO-A segment at location 0x10F8 to

0x10FF. If from any reason the DCO constants are erased, but these data are used in the

application software to tune the DCO to desired frequency, then application can not work at

all due to unpredicted DCO frequency. The FlashPro430 allows to verify if the DCO

constants are valid, this means if data are not 0x00 or 0xFF. If these data ale not blank and

contains any data, then it can be assumed that the INFO-A segment contains correct DCO

constants. When the “Check DCO constants” in the “DCO constants verification” group

is selected, then software at the end of Autoprogram process is verified the DCO constants

and create a warning or reporting failed Autoprogram process. When the JTAG or Spy-Bi-

Wire communication is used, then it is possible to recalibrate the DCO constants, if the DCO

constants are invalid. The “Apply DCO calibration....” should be selected in this case. The

DCO calibration and DCO constant location are fixed regardless setup in the “DCO

calibration” dialogue screen.

DCO constants location 0x10F8 to 0x10FF

DCO frequencies 16, 12, 8 and 1 MHz

6.4 Read Group

The Read Address Range group block (see Fig.6-1) specifies the address range used in

reading process. Memory read setup has four available options:

1. All Memory

2. Main memory only

3. Info memory only

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 43

4. User Defined

The meaning of each option is the same as for the erase/write/verify procedure. The Info Memory

only option works the same way as Main memory only option described above, except that only

information memory is modified.

6.5 Verification Group

Verification group setup allows the user to select one of the three write verification methods:

1. Fast Verification,

2. Standard Verification,

3. None.

Fast Verification:

Fast verification method can only be used if the JTAG/SBW Interface or the Fast BSL is

used (communication speed of 350 kb/s). If fast verification is selected and BSL is used

(communication speed of 9.6 kb/s), then standard verification procedure is used. During the

fast verification, each byte is verified after being written and at the end of the process the

check sum is read from the flash memory and compared to calculated check sum taken from

the code file. If JTAG/SBW Interface is used then verification is performed also using a

pseudo signature analysis (PSA) algorithm.

Note: Fast verification is permanently enabled and can not be switched off, if the JTAG/SBW

Interface or Fast BSL is used.

Standard verification:

Standard verification is performed after memory write process is completed. Contents of the

flash memory are read and compared with the contents of the code file. If both data are the

same, then verification process is finished successfully. Typically, the standard verification

procedure requires the same amount of time as read/write procedure. Total programming

time with standard verification is around two times longer than read/write procedure time.

Note: If BSL Interface is selected and communication speed is set to 9.6kb/s then standard

verification method is the only method available to verify contents of written memory.

Otherwise, fast verification is used first and if fast verification is successful, then standard

verification procedure is initiated.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 44

6.6 Write/Read the BSL Flash sectors in the F5xx/F6xx MCUs

The MSP430F5xx and MSP430F6xx microcontrollers have the BSL firmware saved in the

Flash Memory sectors. By default, access to these sectors (Read/Write) is blocked, however it is

possible to modify the BSL firmware if required - that allows to download the newer or custom

defined BSL firmware. These BSL sectors are located in the memory space 0x1000 to 0x17FF. The

FlashPro430 software allows to modify these sectors using the same method accessing the BSL

memory sectors as all other memory sectors. However - to avoid unintentional erasing the BSL

sectors the most used memory option - All memory - has blocked access to the BSL sectors. Access

to BSL sectors is unlocked only when the Used by Code file or Used defined option is selected and

desired selected BSL sectors are enabled (see Figure 6.3). Contents of the BSL sectors can be read

when All memory or Used defined and desired BSL sectors are selected.

Figure 6.3

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 45

When the code file is read with code contents in the BSL sectors and the BSL sectors are not

selected in the memory option ,then the following warning message will be displayed (Figure 6.4).

Figure 6.4

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 46

7. Adapter Options

7.1 JTAG/SBW/BSL Communication Dialogue Box

The “Communication Interface with the Target Device” dialogue screen enables the user

to select the communication speed between programming adapter and target microcontroller.

7.1.1 Communication Interface

The communication interface type - JTAG, Spy-Bi-Wire or BSL can be selected (see Figure

7-1). Proper communication interface and related connection of the programming adapter with target

devices should be selected otherwise communication with the target devices can fail. See chapter

-11 for the connection’s details.

It is recommended to use by default communication through the JTAG/SBW Interface,

because this communication is faster then the communication through the BSL Interface. Also ‘blow

the security fuse’ and serialization procedures are accessible only from the JTAG/SBW

communication port. When the security fuse is blown, then JTAG/SBW interface is unusable, and

only the BSL communication port can be used.

Figure 7-1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 47

7.1.2 JTAG Communication Speed

Default JTAG communication speed between programming adapter and target device is 1

Mb/s. In some condition, when the cable between FPA and target device is long or some protection

components are installed in the JTAG interface then the fast JTAG communication can not be used.

In this case lower speed 400kb/s can be used to establish communication between FPA and target

device (see Figure 7-1 - JTAG communication speed selector).

7.1.3 BSL Communication Speed

Default BSL communication speed between programming adapter and target device is 150

kb/s. In some condition, when the cable between FPA and target device is long or some protection

components are installed in the BSL interface then the fast BSL communication can not be used.

In this case lower speed 9.6 kb/s can be used to establish communication between FPA and target

device (see Figure 7-1 - BSL communication speed selector).

7.1.4 Spy-Bi-Wire Communication Speed

Default Spy-Bi-Wire communication speed between programming adapter and target device

is set as a “Fast” with following specifications:

 Minimum clock pulse width - 0.25us

 Minimum delay between data and clock - 0.25us

This delay allows to use the maximum capacitor in the SBWTDIO line and ground (used in the reset

circuit together with the TDIO data line) up to 330 pF. When this apacitor has higher value (up to

2.2 nF), or the JTAG/SBW cables are long, then the “Slow” Spy-Bi-Wire communication should be

selected.

The “Slow” Spy-Bi-Wire communication has a following specifications:

 Minimum clock pulse width - 1.0 us

 Minimum delay between data and clock - 1.5 us

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 48

7.2 Reset Dialogue Box

The Target’s Reset Dialogue screen enables the user to select the Reset pulse duration and reset line

state at the end of programming process.

7.2.1 Reset pulse duration

The reset pulse allows the adapter to initiate communication with a microcontroller using the

JTAG Interface. In most cases the pulse width of 10ms is sufficient to initiate communication

process. However, this may be affected by additional load on the reset line. Therefore, four

additional settings, 100, 200, 500 ms and custom , are available. When the RESET IC circuit is used

Figure 7.2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 49

then the custom defined reset pulse duration can be used. Two parameters of the custom reset pulse

are defined - initialization reset pulse time (typically very short - 1 ms) and an idle reset time. Idle

reset time must be set at least to duration of the reset time generated by the RESET circuit.

7.2.2 Final Target Device action

Every device action, like AUTO Program, Read etc. starts with the activation of the RESET

line (active low). When the device programming action begins the RESET line is raised high. When

device action is finished, then RESET line is again asserted, protecting the target device from

running the application program. This method is commonly used to protect the programming adapter

from the DC overload. However, when target device is supplied from its own power supply, or a

battery, the overload protection of the programming adapter is no longer necessary.

The target device can be set to run an application immediately after the target device

programmed. This allows to verify functionality of the programmed device if required. In order to

do this check the

 ‘Hardware Reset (RST line) and start the application program’

 or

 ‘Soft Reset (JTAG only) and start the application program’

 or

 ‘ON/OFF Vcc and start the application program’

option in the Reset Options window, shown in Figure 7-2. Application run time can be unlimited

or limited up to 120 seconds. Limited time is specified in the “Application Program RUN time”

box. When entered ‘0' in the “Program RUN time” box then time is unlimited. When the program

run time is limited, then also it is possible to turn on a programmable generator with duty cycley 50%

on the JTAG TDI pin. Output period on the TDI pin can be programmed from 0.1667 to 42.6 us

when the period increment is set to 0.1667us, or from 0.5 us to 128 us when the period increment

is set to 0.5 us (see Figure 7.2). The programmable generator can be used as a reference clock for

target device test (eg. DCO calibration etc). The reference clock from the TDI pin can be provided

to tested circuit via resistor 4.7 k or higher to avoid overload the TDI line during communication via

JTAG interface.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 50

7.3 Preference Dialogue Box

In the Preference Dialogue screen is possible to specify an external tools location and define

a preferable audio tones during programming.

In the first edit line it can be specified the pdf Reader file name. By default it is used the

Acrobat Reader AcroRd32.exe file. However it is possible to change the pdf Reader if required in

the PDF Reader edit line. Using the Browse.. button please select location of the pdf Reader

executable file.

In the second edit line it should be specified location of the Texas Instruments’ hex

conversion utility file - hex430.exe. This tool is used to convert the *.out file generated by the Code

Composer Essentials debugger to the Intel.hex file when the Open Code option I used and selected

Figure 7.3

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 51

the TI’s CCE (*.out) file. The hex430.exe file is supplied with the TI’s Code Composer Essentials

debugger and by default is located in directory

 C:\Program Files\Texas Instruments\CC Essentials v3.1\tools\compiler\MSP430\bin

The FlashPro430 uses following keys when the *.out file is converted to *.hex file

 hex430.exe -romwidth=8 -memwidth=8 -i -o=file_name.hex input_file.out

If the TI’s CCE (*.out) option is used and the hex430.exe file cannot be found, then following

message is displayed (Figure 7.4).

Using the Browse.. button in the Preferences Dialogue screen the new location of the hex430.exe

file should be specified.

In the Option group the report history in the report window (see figure 4.1) can be enabled

or disabled . When enabled then the report history is displayed up to 8 kB characters (approximately

20 last communication messages). When disabled, then the only last programming report is

displayed.

Programming software can generate audio tones when error programming occurred or tone

ok at the end of programming. Tone can be generated using PC speaker or audio wave generator.

Option dialogue box allows to select desired audio option (see Figure 7.3).

Figure 7.4

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 52

8. Serialization

8.1 Introduction

GangPro430 programming software has ability to automatically create the target device’s

serial number and save it in the flash memory. The serial number (SN) that have already been used

are stored in the data file. The new SN is created by incrementing a counter that for the SN and the

highest SN is stored in a data file. Furthermore, model name, group, revision can be downloaded to

target device. The SN format and location in the device’s flash memory must be specify by the user.

Figure 8-2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 53

Note: Serialization is available only when the JTAG/SBW communication is used.

Serial number is created, when Auto Program or Write SN button is pressed and the Serial

Number feature is enabled. When Auto Program function is activated the SN is programmed to the

target’s device memory at the same time along with code data. If Auto Program fails for any reason

then new SN is not created.

The software also allows the microcontroller to retain its SN if one has already been assigned

to it. Every time a device is programmed and serialization is enabled the contents of the target’s

memory are scanned for existing serial number. If the serial number is found the message in figure

8.1 will appear and allow you to decide if you wish to keep the old serial number, new serial number

or serial number modified manually.

8.2 Serialization Dialogue Screen

Serialization dialogue box, shown in figure 8-2, allows configuration for serialization process

to be set. Serialization can be enabled, or disabled, by selecting the check mark in the ENABLE

Serialization box. When serialization is disabled all edit lines and check boxes are disabled. When

serialization is enabled all fields must be set.

Figure 8.1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 54

8.2.1 Serial number File

The ‘Serial Number File Path and Name’ specifies the full path and file name, where data

base contents will be saved. Serial Number file contains following data, separated by tabulation:

1. Serial Number Format (F0,F1,F2,F3,F4,F5,F6),

2. Serial Number,

3. SN action type (New SN, unmodified SN, overwritten SN, manual SN)

4. Time and date, when SN has been created,

5. Code File Name

6. Model text.

Below is an example of data file, containing data from the three consecutively created serial

numbers.

F0 200300011 m (Sat, Mar 29,2003, 10:09) AS010X02-1v2.txt -01 R.0003-04-17

F0 200300012 . (Sat, Mar 29,2003, 10:43) AS010X02-1v2.txt -01 R.0003-04-17

F0 200300013 u (Sat, Mar 29,2003, 10:43) AS010X02-1v2.txt -01 R.0003-04-17

Serial number can be created as a unique SN per target’s device type, or as a unique SN in

any devices type. When unique SN per target device type is created, then serial number file name

and path should be used for each device type separately. If a unique SN for any devices type is

created, then only one serial number file name should be used.

8.2.2 Serial number formats

Programming software has seven methods for creating the serial number, referred to as

Display format, and four methods of storing the SN in the memory, referred to as In Memory

Format in the serialization dialogue screen. When a serial number is created, current date (if

required) is taken from the PC timer. Make a sure, that your computer has correct date and time.

Display Format:

1. YYYY-1234(5) -(SN Format - F0) Serial number has 8 or 9 characters. First four

characters contain current year, and remaining 4 or 5 characters

contain the serial number, eg. SN 20030123 or 200300123 has a

number 0123 (or 00123) created in the 2003 year.

2. YYMM-1234(5) - (SN Format - F1) Serial number has 8 or 9 characters. First two

characters contain last two digits of current year, next two characters

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 55

contains current month, and remaining 4 or 5 characters contain a

number, eg. SN 03030123.

3. YYMMDD-1234 - (SN Format - F5) Serial number has 10. First six characters contain

date (year, month, day of month) and remaining 4 characters contain

a number, eg. 0405120123.

4. YYDDD-1234(5) - (SN Format - F4) Serial number has 9 or 10. First five characters

contain date (year, day of year from 1 to 366) and remaining 4 or 5

characters contain a number, eg. 041230123.

5. 123456768 - (SN Format - F2) 8 digits serial number without date stamp.

6. 1234(5) - (SN Format - F3) 4 or 5 digits serial number without date stamp.

7. Custom - (SN Format - F6) 4 to 16 Ascii characters or hexadecimal numbers

entered manually or from the Bar-Code Reader.

8. From the file - (SN Format - F7) 4 to 16 Ascii characters or hexadecimal numbers

taken from the user created file.

Serials numbers format 1 to 6 can be stored in memory in HEX, BCD or Ascii format. These

formats accept only numeric characters from 0 to 9. All numbers are displayed in the decimal format,

regardless of the format HEX, BCD, Ascii used in the target memory.

Custom and from the file serial number can be stored in Ascii or HEX format.

8.2.2.1 HEX (MSB first, MSW first, LSW/LSB first) formats

When hex format is selected, then all SN display formats described above can be stored as

a one or two integer (16-bits - 2 bytes) numbers. First four display characters will be saved as one

hex integer number and remaining five characters will be saved as a second hex integer number.

When format HEX(MSB first) is selected then the first hex integer number is saved as a first byte

and the second number - as a next byte etc. in the Flash memory location.

When format HEX(MSW first) is selected then the first hex integer number is saved as a first word

and the second number - as a next word in the Flash memory location.

When format HEX(LSW/LSB first) is selected then the first hex integer number is saved as a second

word and the second number - as a first word in the Flash memory location.

Display Format: YYYY-1234(5) - size in FLASH - 4 bytes

SN 200300123 will be saved as

YYYY - 2003 (Decy) -> 0x07D3 (hex)

12345 - 00123 -> 0x007B (hex)

In flash memory this number can be seen as

07D3 007B -> HEX(MSW first)

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 56

007B 07D3 -> HEX(LSW first)

when integer numbers are viewed, or as

<--- Hex format bytes---> (Size - 4 bytes)

D3 07 7B 00 -> HEX(MSW first)

7B 00 D3 07 -> HEX(LSW first)

when bytes are viewed (first byte is the LSW byte from the integer number)

Displayed consecutive serial number (16-bits integer number) can have a value from 0 to

(2^16-1) equal 65535 and is displayed as the 5 digits serial number.

Display Format: YYMM-1234(5) - size in FLASH - 4 bytes

SN 030300123 will be saved as

YYMM - 0303 (Decy) -> 0x012F (hex)

12345 - 00123 -> 0x007B (hex)

In flash memory this number can be seen as

012F 007B -> HEX(MSW first)

007B 012F -> HEX(LSW first)

or

<--- Hex format bytes---> (Size - 4 bytes)

2F 01 7B 00 -> HEX(MSW first)

7B 00 2F 01 -> HEX(LSW first)

Display Format: YYMMDD-1234 - size in FLASH - 4 bytes

The format date is compressed to be able to fit data in only in two bytes as follows:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 <---(year-2000)----> < month><— day -->

SN 0405110123 will be saved as

YYMMDD - 040511 (Decy) -> 0x08AB (hex)

1234 - 0123 -> 0x007B (hex)

In flash memory this number can be seen as

08AB 007B -> HEX(MSW first)

007B 08AB -> HEX(LSW first)

or

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 57

<--- Hex format bytes---> (Size - 4 bytes)

AB 08 7B 00 -> HEX(MSW first)

7B 00 AB 08 -> HEX(LSW first)

Display Format: YYDDD-1234 - size in FLASH - 4 bytes

The format date is compressed to be able to fit data only in two bytes as follows:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 <---(year-2000)----> < –-- day of year --->

SN 041110123 will be saved as

YYDDD - 04111 (Decy) -> 0x086F (hex)

1234 - 0123 -> 0x007B (hex)

In flash memory this number can be seen as

086F 007B -> HEX(MSW first)

007B 086F -> HEX(LSW first)

or

<--- Hex format bytes---> (Size - 4 bytes)

6F 08 7B 00 -> HEX(MSW first)

7B 00 6F 08 -> HEX(LSW first)

Display Format: 123456768 - size in FLASH - 4 bytes

SN 12345678 will be saved as

12345678 (Decy) -> 0x00BC614E (hex)

In flash memory this number can be seen as

00BC 614E -> HEX(MSW first)

 614E 00BC -> HEX(MSW first)

or

<--- Hex format bytes---> (Size - 4 bytes)

00 BC 61 4E -> HEX(MSB first)

BC 00 4E 61 -> HEX(MSW first)

4E 61 BC 00 -> HEX(LSW/LSB first)

Display Format: 1234(5) - size in FLASH - 2 bytes

SN 12345 will be saved as

12345 (Decy) ---> 0x3039 (hex)

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 58

In flash memory this number can be seen as

3039 (integer numbers) -> HEX(MSW first) or HEX(LSW first)

or

<--- Hex format bytes---> (Size - 2 bytes)

30 39 (bytes) -> HEX(MSB first)

39 30 (bytes) -> HEX(MSW first) or HEX(LSW/LSB first)

Display Format: Custom - size in FLASH - defined size divided by 2

Entered manually or read via Bar Code Scanner hexadecimal number is converted to HEX

format and saved in flash memory in order related to MSW or LSW first selection.

E.g. entered hexadecimal number

 02A569C1

will be seen as

 02 A5 69 C1 -> HEX (MSB first)

or

 C1 69 A5 02 -> HEX (LSW/LSB first)

8.2.2.2 BCD format

When BCD format is selected, then all SN display formats described above can be stored as

a two or four separate bytes converted to BCD format, where first and last four bits of 8 bit byte

contains a value from 0 to 9. All consecutive serial number characters are converted to half byte

each. Finally two consecutive serial number characters will be converted to a single byte.

Display Format: YYYY-1234 - size in FLASH - 4 bytes

SN 20030123 will be saved as

YYYY - 2003 -> 0x20 0x03 (bytes)

1234 - 0123 -> 0x01 0x23 (bytes)

When flash memory bytes are viewed, then this number can be seen as

<--- Hex format bytes--->

20 03 01 23 (Size - 4 bytes)

The consecutive serial number (4 bytes BCD) can have a value from 0 to 9999 and is

displayed as the 4 digit serial number.

Display Format: YYMM-1234 - size in FLASH - 4 bytes

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 59

SN 03030123 will be saved as

YYMM - 0303 -> 0x03 0x03 (bytes)

1234 - 0123 -> 0x01 0x23 (bytes)

In flash memory this number can be seen as

<--- Hex format bytes--->

03 03 01 23 (Size - 4 bytes)

Display Format: YYMMDD-1234 - size in FLASH - 5 bytes

SN 0405110123 will be saved as

YYMMDD - 040511 -> 0x04 0x05 0x11

1234 - 0123 -> 0x01 0x23

In flash memory this number can be seen as

<--- Hex format bytes--->

04 05 11 01 23 (Size - 5 bytes)

Display Format: YYDDD-1234 - size in FLASH - 4 bytes

The format date is compressed to be able to fit data only in two bytes as follows:

Bit 15...12 - Year number - multiple of ones (9,8,...1,0)

 11,10 - Year number - multiple of tens (3,2,1,0)

 9, 8 - Day number - multiple of hundreds (3,2,1,0)

 7...4 - Day number - multiple of tens (9,8,...1,0)

 3...0 - Day number - multiple of ones (9,8,...1,0)

SN 041110123 will be saved as

YYDDD - 04111 (Decy) -> 0x41 0x11 (hex)

1234 - 0123 -> 0x01 0x23 (hex)

Display Format: 123456768 - size in FLASH - 4 bytes

SN 12345678 will be saved as

12345678 -> 0x12 0x34 0x56 0x78 (bytes)

In flash memory this number can be seen as

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 60

<--- Hex format bytes--->

12 34 56 78 (Size - 4 bytes)

Display Format: 1234 - size in FLASH - 2 bytes

SN 1234 will be saved as

1234 -> 0x12 0x34 (bytes)

In flash memory this number can be seen as

<--- Hex format bytes--->

12 34 (Size - 2 bytes)

8.2.2.3 ASCII format

When Ascii format is selected, then all SN display formats described above can be stored as

a four or eight separate bytes converted to Ascii characters. All consecutive serial number characters

are converted to Ascii characters.

Display Format: YYYY-1234 - size in FLASH - 8 bytes

SN 20030123 will be saved as

YYYY - 2003 -> 0x32 0x30 0x30 0x33 (bytes)

or ‘2' ‘0' ‘0' ‘3'

1234 - 0123 -> 0x30 0x31 0x32 0x33 (bytes)

or ‘0' ‘1' ‘2' ‘3'

When flash memory bytes are viewed, then this number can be seen as

<------ Hex format ------> <– Ascii format –>

32 30 30 33 30 31 32 33 20030123 (Size - 8 bytes)

Display Format: YYMM-1234 - size in FLASH - 8 bytes

SN 03030123 will be saved as

YYMM - 0303 -> 0x30 0x33 0x30 0x33 (bytes)

or ‘0' ‘3' ‘0' ‘3'

1234 - 0123 -> 0x30 0x31 0x32 0x33 (bytes)

or ‘0' ‘1' ‘2' ‘3'

In flash memory this number can be seen as

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 61

<------ Hex format ------> <– Ascii format –>

30 33 30 33 30 31 32 33 03030123 (Size - 8 bytes)

Display Format: YYMMDD-1234 - size in FLASH - 10 bytes

SN 0405110123 will be saved as

YYMMDD - 040511 -> 0x30 0x34 0x30 0x35 0x31 0x31 (bytes)

or ‘0' ‘4' ‘0' ‘5' ‘1' ‘1'

1234 - 0123 -> 0x30 0x31 0x32 0x33 (bytes)

or ‘0' ‘1' ‘2' ‘3'

In flash memory this number can be seen as

<----------- Hex format ----------> <– Ascii format –>

30 34 30 35 31 31 30 31 32 33 0405110123 (Size - 10 bytes)

Display Format: YYDDD-1234 - size in FLASH - 9 bytes

SN 042140123 will be saved as

YYDDD - 04214 -> 0x30 0x34 0x32 0x31 0x34 (bytes)

or ‘0' ‘4' ‘2' ‘1' ‘4'

1234 - 0123 -> 0x30 0x31 0x32 0x33 (bytes)

or ‘0' ‘1' ‘2' ‘3'

In flash memory this number can be seen as

<-------- Hex format ----------> <– Ascii format –>

30 34 32 31 34 30 31 32 33 042140123 (Size - 9 bytes)

Display Format: 123456768 - size in FLASH - 8 bytes

SN 12345678 will be saved as

12345678 -> 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 (bytes)

In flash memory this number can be seen as

<------ Hex format ------> <– Ascii format –>

31 32 33 34 35 36 37 38 12345678 (Size - 8 bytes)

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 62

Display Format: 1234 - size in FLASH - 4 bytes

SN 1234 will be saved as

1234 -> 0x31 0x32 0x33 0x34 (bytes)

In flash memory this number can be seen as

<------ Hex format ------> <– Ascii format –>

31 32 33 34 1234 (Size - 4 bytes)

Display Format: Custom or from the file - size in FLASH - defined size in bytes

Taken from the file or entered manually Ascii string will be saved in the flash memory.

When the Ascii format is selected, then the Ascii string is saved in memory “as is”.

All Ascii characters can be used. For example the entered following string

 02WX24S234

will be saved in memory as

 30 32 57 58 32 34 53 32 33 34 -> “02WX24S234"

When the HEX format is selected, then the string is converted to HEX format (only hex

characters are accepted - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

All two character pairs are converted to hex format and saved in memory.

 For example the entered following string

02A3B109E12F

will be saved in memory as

 HEX(MSB first) -> 02 A3 B1 09 E1 2F

or HEX(LSB first) -> 2F E1 09 B1 A3 02

Location in the target device’s flash memory, where described above bytes are saved, is

specify in the ‘Memory Location - SN Start Address in Memory’ field of the serialization dialogue

screen (see figure 8.3). Specified address must be even and should be specified in the empty

memory space, not used by program code or data block

When software detects that any serial number character is using memory location used by

code file, then the following error message will be displayed:

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 63

8.2.3 Model, Group, Revision

Custom text, saved in target device’s flash memory is a string, up to 32 characters long, in

Ascii format. It can contain any text, but this feature is intentionally created to allow the hardware

model, revision and group to be saved. Typically the object code does not contains this kind of

information, but it may be useful in some applications.

This feature is enabled when the check box ENABLE in the Model/Group/Revision field

is marked (see figure 8.2). When enabled, the size of desired text must be specified in the field ‘Text

size in bytes’. Size value can be any even number between 2 and 32. The location of the text in the

flash memory can be specified in the field ‘Start Address in Memory’. Similarly to the location of

the serial number, the specified address must be even and must be specified in the empty memory

space, unused by program code or data block. Otherwise, the error message shown in figure 8.3 will

be displayed.

The text to be saved in the flash memory can be entered in the ‘Model/Group/Revision text’

edit line. If the size of entered text exceeds the size specified in the ‘Text size in bytes’ field, then

all character that do not fit in the allocate space will be truncated.

8.2.4 Device Serialization box

Device Serialization box, located on the main programming dialogue screen (see figures 8-2

and 4-1), contains serial number and model information. The first SN column contain information

Figure 8.3

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 64

taken from the target devices. The next column contain serial numbers list that are to be saved.

Whenever a communication with the target device is performed the serial number is read and

displayed in the Device Serialization group.

The ‘Model-Group_Revision’ and ‘Next SN’ edit lines can contain any SN and text. When

the device is programmed the next model text is taken from the ‘Model/Group/Revision’ edit line

of the Serialization dialogue screen. The next SN is generated automatically, according to the setup

in the Serialization . This means that any data entered in the‘Device Serialization’ group can be

treated as temporary data and downloaded to the target devices. When the SN is entered manually

and Autoprogram button is pressed, then the SN editor is displayed (Figure 8.4). SN editor allows

to select and edit desired serial numbers to be programmed in targets devices.

Figure 8.4

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 65

8.3 Serialization Report Dialogue Screen

Serialization Report Dialogue Screen reports the results of the serialization procedure. The report

contains the detailed information of the two highest serial number programmed units, quantity of

programmed units along with the new created serial numbers, unmodified SN (reprogrammed units),

manually created SN and quantity of the overwritten SN. Detailed information about all programmed

units can be viewed using the Notepad text editor by pressing the ‘NotePad’ button.

Short information of the created serial numbers, format, date and time of programming is

displayed on the white report box (see Figure 8.3-1). Serial numbers are created automatically via

software by incrementing the highest SN taken from the serial number files. If from any reason the

highest serial number is wrong it can be removed from the database by pressing the ‘Delete SN’

button. Note that the delete operation is not reversible.

8.4 SN data file

Figure 8.3-1 Serialization Report Dialogue screen

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 66

The FlashPro430 software allows to download the serial number from custom defined data

file. When the data file is used then in the serialization dialogue screen the Serial Number Format

-> From File should be selected.

The SN data file can contains list of serial numbers. Format of the serial numbers can be

specified in the serialization dialogue screen (Figure 8.2) as Ascii or HEX. The SN data file can be

created in any DOS editor like Notepad.exe. In this file any data specified after semicolon (;) will

be ignored and can be used as a comment only. Data file should contains header and serial number

list. Following list of commands started from # can be specified in the header:

#SN_LIST

Data file contains Serial number list.

#SN_SIZE number ;optional

Overwrite size of the custom defined serial number size (see Figure 8.2). If the #SN_SIZE

is not specified, then the data specified in the serialization dialogue screen is used.

#SN_PREFIX string ;optional

#SN_SUFFIX string ;optional

Serial number can contains up to 16 characters. If part of characters are the same in specified

serial number list, then the repetable part can be specified in the SN_PREFIX, or

SN_SUFFIX, and only modified part of serial numbers can be listed. Serial number is

combined as a string starting from prefix, modified part and ending with suffix.. For example

if the following serial number should be created

AB2007X-0001-BMR

AB2007X-0002-BMR

AB2007X-0003-BMR

can the SN be specified as follows

#SN_PREFIX AB2007X-

#SN_SUFFIX -BMR

and list of following serial numbers

0001

0002

0003

Prefix and /or suffix numbers can be modified in the list if required, eg.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 67

#SN_PREFIX AB2007X-

#SN_SUFFIX -BMR

0001

0002

0003

#SN_PREFIX AB2007V-

 0001

0002

0003

that defined following serial numbers

AB2007X-0001-BMR

AB2007X-0002-BMR

AB2007X-0003-BMR

AB2007V-0001-BMR

AB2007V-0002-BMR

AB2007V-0003-BMR

Example of the Serial Number list (5 lines only in this example)

; ===

; Serial Number List

; SN format - Ascii

; ===

#IEEE_SN_LIST

#SN_SIZE 12

WX5E2007001P

WX5E2007002P

WX5E2007003P

WX5E2007004P

WX5E2007005P

; ===

The same Serial Number list with specified prefix /suffix

; ===

; Serial Number List

; SN format - Ascii

; ===

#IEEE_SN_LIST

#SN_SIZE 12

#SN_PREFIX WX5E2007 ;any Ascii character

#SN_SUFFIX P

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 68

001

002

003

004

005

; ===

When the SN data file is prepared, then at the first the data base file should be opened(see

Figure 8.2). When the desired Serial Number Format is selected, then using the SN/IEEE file

button located in the main dialogue screen (Figure 4.1) the desired SN file should be opened.

Selected file is converted to final format and all listed serial numbers are verified with the data base

file if there was note used before. If the specified SN have been used before, then these numbers are

removed from the SN list. When the SN file is read and verified, then the pending SN list is

displayed in the screen (Figure 8.4-1) with following information displayed on the top of the list

* number of the SN found in data base and removed from the pending list

* number of the Serial Numbers with incorrect size and removed from the pending list

* number of the accepted SN

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 69

When the “Paste to Notepad” button is pressed, then the pending Serial Number list can be saved in

format ready to be used as a valid SN data file if required.

Figure 9.1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 70

9. Check Sum Options

Programming software has two groups of check sum (CS) calculation. The first group is used

for internal programming verification and the second group can be used for firmware verification in

application software.

The CS used for internal verification is calculating CS only for specified words in the code

file regardless of the flash memory size, location etc. This CS is useful only inside the programmer,

because programmer has all information about programmed and empty bytes location. This method

is also useful if only part of the code is programmed in the flash (append option). All not programmed

words in the programming process are ignored, even if these words are not empty in the flash.

The check sum used for internal programming verification is displayed in the Check Sum

Group (Figure 9.1) (see the Main Dialog screen - Figure 4.1)

In the source line is displayed the arithmetic sum of the code contents with added contents of

the serialization, model etc. if selected. Arithmetic sum is calculated as the sum of 16-bits unsigned

words - result is 32 bits unsigned. Only programmed words are taken for calculation. All other not

used words are ignored. All bytes are converted to 16-bits words as follows (for simplicity - format

casting is not present in this example):

 word = data[address] + (data[address+1]<<8)

where address is even and incremented by 2.

In the memory line is displayed the CS result taken from the flash memory, calculated in the

same way as the CS taken from the source. Only words defined in the source are taken from the flash

memory for calculation.

Figure 9.1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 71

Second group of the CS is custom defined Check Sum that can be used by firmware for code

verification in the flash. Up to four CS block can be specified and CS results can be saved in the flash

for verification. Size of each CS block and CS result location in flash are defined by the user.

The Check Sum Options dialog (figure 9-2) is selected from following pull down menu:

 Setup -> Check Sum Options

Start Address should be even, and the Stop Address should be odd. CS result address in the flash

should be even. Make sure that the CS result is saved out of the CS block space. Otherwise the CS

result will modify the contents of the CS inside the specified block. CS result after the second

calculation would not be the same and CS result would be useless.

When the CS Result Save option is not selected then the CS of the selected block is calculated

and CS result displayed in the report window only (Figure 9.3) This option can be used for CS

Figure 9.2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 72

code verification defined as the code form Start to End Addresses with 0xFF data in the not specified

code location.

Type of the CS can be selected from the following list (Figure 9.4)

Initial value for CS calculation can be selected as zero, all 0xFFs or as the Start Address from

pull down menu (Figure 9.5).

Figure 9.3

Figure 9.4

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 73

CS result can be used As Is or can be inverted (Figure 9.6).

Data size (byte or 16 bits word) used for calculation and CS result size is displayed in the

dialog screen as Data IN word size and CS Result size (Figure 9.2). Polynomial contents (if

required) can be specified in the POLY edit line in HEX format (eg. 0x1234).

9.1 Check Sum types

Following Check Sum types are implemented (Figure 9.4)

Arithmetic Sum (8b / 16b)

Check Sum is calculated as modulo 16-bits sum of all bytes (unsigned) from Start to the End

Addresses as follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr++)

{

 CS = CS + (unsigned int) data[addr];

}

Figure 9.5

Figure 9.6

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 74

CS = 0xFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFF ^ CS;

Arithmetic Sum (8b / 32b)

Check Sum is calculated as modulo 32-bits sum of all bytes (unsigned) from Start to the End

Addresses as follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr++)

{

 CS = CS + (unsigned long) data[addr];

}

CS = 0xFFFFFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFFFFFF ^ CS;

Arithmetic Sum (16b / 16b)

Check Sum is calculated as modulo 16-bits sum of all 2-byte words (unsigned) from Start to

the End Addresses as follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr=addr+2)

{

 CS = CS + (unsigned int)data[addr] + (unsigned int)data[addr+1];

}

CS = 0xFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFF ^ CS;

Arithmetic Sum (16b / 32b)

Check Sum is calculated as modulo 32-bits sum of all 2-byte words (unsigned) from Start to

the End Addresses as follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr=addr+2)

{

 CS = CS+(unsigned long)data[addr] + (unsigned long)data[addr+1];

}

CS = 0xFFFFFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFFFFFF ^ CS;

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 75

CRC16 (Poly 0x11201) - (8b / 16b) (Named as CRCCCITT)

and

CRC16 defined polynomial - (8b / 16b)

Check Sum is calculated as CRC16 from each bytes from Start to the End Addresses as

follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr++)

{

 CS = CS_CRC16_8to16((long)data[addr], CS);

}

CS = 0xFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFF ^ CS;

where

unsigned long CS_CRC16_8to16(long data, unsigned long crc)

{

 unsigned long tmp;

tmp = 0xFF & ((crc >> 8) ^ data);

crc = (crc << 8) ^ crc_tab32[tmp];

 return(0xFFFF & crc);

}

The CRC table is generated first as follows:

CS_init_crc16_tab(0x1021); for CRC CCITT

CS_init_crc16_tab(CRC_def_POLY); for CRC16 defined polynomial

where

void CS_init_crc16_tab(unsigned short poly)

{

 int i, j;

 unsigned short crc, c;

 for (i=0; i<256; i++)

{

 crc = 0;

 c = ((unsigned short) i) << 8;

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 76

 for (j=0; j<8; j++)

{

 if ((crc ^ c) & 0x8000)

crc = (crc << 1) ^ poly;

 else

crc = crc << 1;

 c = c << 1;

 }

 crc_tab32[i] = (unsigned long)(0xFFFF & crc);

 }

}

CRC32 (Poly 0x04C11DB7) - (8b / 32b) (Named as IEEE 802-3)

and

CRC32 defined polynomial - (8b / 32b)

Check Sum is calculated as CRC32 from each bytes from Start to the End Addresses as

follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr++)

{

 CS = CS_CRC32_8to32((long)data[addr], CS);

}

CS = 0xFFFFFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFFFFFF ^ CS;

where

unsigned long CS_CRC32_8to32(long data, unsigned long crc)

{

 return(((crc >> 8) & 0x00FFFFFF) ^ crc_tab32[0xFF & (crc ^ data)]);

}

The CRC table is generated first as follows:

 CS_init_crc32_tab(0x04C11DB7) for IEEE 802-3

 a polynomial of

 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

and

 CS_init_crc32_tab(CRC_def_POLY) for CRC32 defined polynomial

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 77

where

void CS_init_crc32_tab(unsigned long poly_in)

{

 int n, k;

 unsigned long c, poly;

 poly = 0L;

 for (n = 0; n < 32; n++)

 {

poly <<= 1;

poly |= 1L & poly_in;

poly_in >>= 1;

 }

 for (n = 0; n < 256; n++)

 {

 c = (unsigned long)n;

 for (k = 0; k < 8; k++)

 c = c & 1 ? poly ^ (c >> 1) : c >> 1;

 crc_tab32[n] = c;

 }

}

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 78

10. BSL Password and Access

The MSP430 bootstrap loader (BSL) enables users to communicate with the MSP430 even

 if the JTAG security fuse is blown. Access to the MSP430 memory via BSL interface is protected

against unauthorized access by a user-defined password. The BSL password itself consist 32 bytes

on location 0xFFE0 to 0xFFFF. This flash memory location is also used by the interrupt vector. If all

interrupt location available in the MSP430 are used and specified, then the BSL password is used in

fully and unauthorized access probability to the MSP430 is very low. But in a lot of application only

part of the interrupt vector is defined. After mass erase all unspecified password data will be 0xFF

and probability of the unauthorized access to the MSP430 becomes much higher. It is strongly

recommended to initialize unspecified data in the interrupt vector to decrease probability of the

unauthorized access to the MSP430.

The BSL Password and Access dialogue (figure 10.1) allows to edit the undefined data

located in the flash memory in location 0xFFE0 to 0xFFFF. In the BSL Password group all unused

data can

Figure 10.1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 79

 be specified. An access to particular flash location is disabled (grey field on the screen) if specified

data is defined in the code file. All unused in the code file locations between 0xFFE0 and 0xFFFF

are enabled (white) and can be edited.

Note: The code contents always has a higher priority then an edited BSL data password. If the new

code file is used and the same location is used in the code file and data specified in the BSL

Password dialogue screen, then the data specified in the BSL Password dialogue will be ignored.

The Create Password File button allows to create BSL passwor file, then can be used in the

future to unlock an access to programmed MSP430 devices.

The newest MSP430 microcontrollers with the BSL version 2.0 and higher have enhanced

security features. These features are controlled by the Flash data word located below the interrupt

vector e.g 0xFFDE. If this word contains:

0x0000: The flash memory will not be erased if an incorrect BSL password has been

received by the target. It is the same features like in all MSP430 with an older

BSL version.

0xAA55: The BSL is disabled. This means that the BSL communication can not be

established.

All other values: If an incorrect password is transmitted then the whole flash memory will be

erased automatically, to protect unauthorized access to the MSP430 device.

Desired option can be selected in the BSL Enhanced Security group of the BSL Password and

Access dialogue. Option can be used only when the BSL version is 2.0 or higher.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 80

11. DCO calibration

If an application software uses the DCO as a main clock in the MPS430Fxx microcontroller,

then an execution time is related to the DCO frequency. When the DCO is not calibrated, then the

DCO frequency variation from unit to unit can be +/-30% or more. See TI’s data sheet for details. In

the F2xx family the DCO frequencies have been calibrated in production process and calibration data

saved in the Info Memory for the DCO frequencies 1MHz, 8MHz, 12MHz and 16 MHz. When the

DCO calibrated data are used in the application software, then the DCO frequency tolerance is better

then 1% from the nominal frequency.

GangPro430 software allows to calibrate up to eight DCO frequencies in the MSP430F1xx,

F2xx or F4xx to any value in the DCO range and saved calibrated DCO constants in the default INFO

Memory locations 0x10F0 to 0x10FF or user defined memory location when the Defined DCO data

address is selected. . The DCO Frequency Calibration dialogue screen (Figure 11.1) can be selected

from pull down menu Setup->DCO calibration.

Figure 11.1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 81

When the selected DCO calibration data is enabled, then in the edited field should be specified

the DCO frequency (in MHz) in the range 0.10 MHz up to 16 MHz. When the F1xx or F4xx MCU

is used, then the maximum frequency can not be higher then 8 MHz. See data sheets for details. When

the F2xx is detected, then the DCO calibration data listed for the DCO 1 to 4 are hardcoded (as it is

calibrated by TI) to frequencies 1, 8, 12 and 16 MHz. If other DCO frequencies are required, then

the DCO 5 to 8 field can be used. The DCO frequency can be calibrated with an internal reference

resistor (as default) or with an external resistor if the box “DCO external resistor Rosc” is selected..

The second option is available in the MSP430F1xx and F2xx family.

Note: The GangPro430 can calibrate the DCO only via JTAG or Spy-Bi-Wire interfaces.

Calibration of the DCO via all interfaces including BSL interface can be done by the

FlashPro430 programmer.

The DCO frequencies are calibrated with tolerance 1% when the Autoprogram or DCO

Calibration button is pressed. Results is saved in the INFO memory.

Note: The DCO frequency is calibrated for the Vcc used during the calibration procedure.

The DCO calibration data can be verified using the tool from pull down menu Tools-> DCO

Frequency Test (see figure 11.2). In the dialogue screen is possible to select the desired DCO

calibration data for all tested target devices and check the DCO frequencies for a selected DCO data

from an Info Memory.

More detailed DCO test can be done when the FlashPro430 software is used (even with the

GangPro430 programming adapter). The FlashPro430 software allows to test only one target device

at the time.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 82

Figure 11.2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 83

12. Script File - defined programming sequence

Programming sequence can be customized when is using a script file. Script file prepared as

a text file (using any editor like notepad) can contains customized programming sequences in any

order. Generally, all buttons available on the main dialogue screen can be used in the script file. All

other options available on others screens like memory options, serialization type etc. can not be

modified from the script file directly, but can be reloaded in fully using configuration file. From the

script file any configuration files can be called at any time that allows to modify programmer

configuration. This method can simplify programming process using script file and allows to use full

options available in the programmer. Programming sequence conditions can be taken from user

defined procedures attached as an independent DLL if required.

Programmer has two entry for taking the sequence from the script file

1. By pressing the Script File button in the Main dialog

2. By using the -rf with the executable file

12.1 Script button

The ‘Script ’ button is the dynamically programmable device action

button that allows to take a desired action taken from the script file. The

Script button has a name Script File - none (Figure 12-1) if the script file

is not defined or Script: with used file name when the script file is active

(Figure 12-2). When the Script button is pressed and the current script file

is not active, then the Open File dialog is displayed and the desired script

file should be selected. When the Script file button is not empty and the

new script file if required, then the new file can be selected from the pull

down menu - File-> Open Script File.

The Script button is very useful for implementing a short

programming sequence not present directly in the Device Action group buttons Below is an easy

script file used for downloading two independent codes to target device - first code used for hardware

test if possible, and when hardware is ok, then the second code is downloaded as the final code to

target device. The same sequence can be used with other buttons, but sequence should be always

repeated, that of course is not convenient.

Figure 12-1

Figure 12-2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 84

Using the notepad editor create the script file and save it eg. as the file “test.sf” or any other file

name. See this chapter below for all available instructions that can be used in the script file.

;--

; easy script file;

;--

 LOADCFGFILE C:\Program Files\Elprotronic\MSP430\USB FlashPro430\test.cfg

 LOADCODEFILE C:\Program Files\Elprotronic\MSP430\USB FlashPro430\test.cfg

 AUTOPROGRAM

; now the hardware is tested according to downloaded firmware

 MESSAGEBOX YESNO

 "Press YES when the test finished successfully."

 "Press NO when the test failed."

 IF BUTTONNO GOTO finish

 LOADCFGFILE C:\Program Files\Elprotronic\MSP430\USB FlashPro430\final.cfg

 LOADCODEFILE C:\Program Files\Elprotronic\MSP430\USB FlashPro430\final.cfg

 AUTOPROGRAM

>finish

 END

;--

When the script file above is used then the first configuration file and the fist code file is downloaded

and Autoprogram function is executed. When finished then the MCU firmware started (make sure

that the first configuration allows to start the code when the Autoprogram is finished). Final code is

downloaded when the test has been finished successfully.

Before running the script file the configuration files named test.cfg and final.cfg required

in the project should be created using the GUI software first. To do that connect target devices to

programming adapter, select desired configuration and save the configuration file as test.cfg and

create final configuration file in similar way.

12.2 Script file option

When the executable file GangPro430.exe is called with a script path as an argument e.g.

 GangPro430.exe -rf C:\Program Files\Elprotronic\USB GangPro430\script.txt

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 85

or when the icon with the GangPro430.exe and script file path is executed then programmer starts

automatically programming sequences according to procedure specified in the script file. Access to

other buttons are blocked. When script file sequence is finished then program is terminated. There

is not option to modify the running sequence when script sequence is used. This option is useful in

production, because nobody can modify sequence that has been prepared for the production purpose.

12.3 Script commands

LIMITATIONS:

1. Up to 1000 script lines commands can be used. Empty lines and lines with comments only are ignored and not

counted.

2. Up to 50 CALL’s deep stack is used (CALL in CALL in CALL......).

SYNTAX:

white spaces before instructions, labels etc are ignored.

; comment - all contents after semicolon are ignored.

NOTE: Comment can not be used in the lines where the file name is specified.

>label - character ‘>’ without spaces must be placed before label name.

NOTE: After label can not be specified any command in the same line. Line can contain label only.

LIST OF INSTRUCTIONS:

MESSAGE - message declaration ,that can be saved to file if required

 “ message - line -1 “ - Text.

 “ message - line -2 “ - Each line contents must be located between characters “ ”

 “ max up to 50 lines “ - Number of content lines - up to 50 lines.

SAVEMSG filename - save message created in MESSAGE to specified file

APPENDMSG filename - append message created in MESSAGE to specified file

SAVEREPORT filename - save message from the GUI report window to specified file

APPENDREPORT filename - append message from the GUI report window to specified file

GUIMSGBOX ENABLE - display the message boxes (warning, errors etc) created by GUI enabled

GUIMSGBOX DISABLE - display the message boxes (warning, errors etc) created by GUI disabled

IFGUIMSGBOXPRESS OK - apply button OK / YES when the message box created by GUI is

generated, but disabled to be displayed.

IFGUIMSGBOXPRESS CANCEL - apply button CANCEL / NO when the message box created by GUI is

generated, but disabled to be displayed.

MESSAGEBOX type FCTEXT - pop-up message box with buttons.

- message taken from the FCONTROL function (User’s DLL)

MESSAGEBOX type - pop-up message box with buttons.

 “ message - line -1 “ - Text displayed in message box.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 86

 “ message - line -2 “ - Each line contents must be located between characters “ ”

 “ max up to 50 lines “ - Number of content lines - up to 50 lines.

 Message box type list

 OK - One button OK

 OKCANCEL - Two buttons OK , CANCEL

 YESNO - Two buttons YES , NO

 YESNOCANCEL - Three buttons YES , NO, CANCEL

GOTO label

CALL label - CALL procedure.

RETURN - return from CALL.

IF condition GOTO label

IF condition CALL label

 condition list:

 BUTTONOK - if button OK pressed in the message box.

 BUTTONYES - if button YES pressed in the message box.

 BUTTONNO - if button NO pressed in the message box.

 BUTTONCANCEL - if button CANCEL pressed in the message box.

 DONE - if selected process e.g. AUTOPROGRAM, Read File etc. finished successfully.

 FAILED - if selected process e.g. AUTOPROGRAM, Read File etc. failed.

 CONTROL = number - if status from the FCONTROL function = NUMBER

FCONTROL type argument - call the external function from FxControl DLL

PAUSE number - pause in miliseconds - 1 to 100000 range (1ms to 100 s).

OPENDLLFILE filename - FxControl DLL file - Full path and DLL File name.

LOADCFGFILE filename - Configuration file - Full path and File name.

LOADCODEFILE filename - Code file - Full path and File name.

LOADPASSWFILE filename - Password file - Full path and File name.

LOADSNFILE filename - File with Serial Number list - Full path and File name.

VCCOFF - Turn OFF Vcc from programming adapter to target device.

VCCON - Turn ON Vcc from programming adapter to target device.

Note: Vcc from FPA must be enabled first using configuration file.

RESET -equivalent to pressed button RESET on the main dialogue screen.

AUTOPROGRAM -equivalent to pressed button AUTOPROGRAM on the main dialogue screen.

VERIFYFUSE -equivalent to pressed button VERIFY SEC. FUSE on the main dialogue screen.

VERIFYPASSWORD -equivalent to pressed button VERIFY PASSWORD on the main dialogue screen.

ERASEFLASH -equivalent to pressed button ERASE FLASH on the main dialogue screen.

BLANKCHECK -equivalent to pressed button BLANK CHECK on the main dialogue screen.

WRITEFLASH -equivalent to pressed button WRITE FLASH on the main dialogue screen.

VERIFYFLASH -equivalent to pressed button VERIFY FLASH on the main dialogue screen.

READFLASH -equivalent to pressed button READ/COPY on the main dialogue screen.

READSN -equivalent to pressed button READ SN on the main dialogue screen.

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 87

BLOWFUSE -equivalent to pressed button BLOW FUSE on the main dialogue screen.

Note: If the BLOWFUSE command is used then the blow security fuse will be processed even if the

“Blow Security Fuse enable” option is disabled. That allows to use command AUTOPROGRAM

with disabled blow security fuse option and on the end call the function BLOWFUSE (if required)

without modifying the configuration setup.

TRACEOFF - trace OFF.

TRACEON - trace ON and saved in the “Trace-Scr.txt” file in current working directory.

Option useful for debugging. Trace file contains sequence of all executed commands from script file in the run

time. On the left side of all lines the current line numbers correspondent to the line number in the script file are

printed. Line numbers are counted without empty lines and without lines contains comments only.

END - end of script program.

Programming sequence conditions can be taken from user defined procedures attached as an

independent DLL and called in the script as a function.

FCONTROL type argument - call the external function from FxControl DLL

Function should be created using Visual C++ and attached to FlashPro430 software. When the DLL

is created then the full path and name of the used DLL should be specified in the script file. In the

script file the name of the desired DLL can be specified on-line few times. This means that more then

one DLL can be used in the programming sequence, but only one DLL at the time. When the new

DLL file is open, then the old DLL file is closed at the same time. One function is used in the user

defined DLL

 _int32 F_Control(_int32 type, _int32 argument, char * message);

Parameters type and argument are specified in the script file and are transferred from the

programming software to DLL. Status from F_Control and message are transferred from DLL to

programming software.

Programming software package contains the source code of the user defined DLL. Package has been

prepared using MS Visual C++.net package. Source code is located in directory

 C:\Program Files\Elprotronic\FxControl-DLL

User defined function should be inserted in empty place inside the FxControl.cpp file and recompiled.

Recompiled file FxControl.dll ready to be used will be located in directory

 C:\Program Files\Elprotronic\FxControl-DLL\release

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 88

DLL file can be renamed to any file name and name and specified in the script file via command

 OPENDLLFILE filename

Below is an easy script file contents that allows to create following sequence;

1. Vcc supplied to target device is turn-OFF and first message box with buttons OK/CANCEL

is displayed. Programmer is waiting until button OK or CANCEL is pressed.

2. When confirmed, then first configuration file test-A.cfg is downloaded to programmer.

Configuration file test-A.cfg should be prepared first using programming software with

desired configuration, selected desired code file etc. Programmer’s configuration should be

saved using “Save setup us ..” option.

3. When test code is downloaded and processor started (if enabled in test-A.cfg file) then

message box is displayed and software is waiting until button YES / NO is press. Meantime

manual target’s device test can be done. If test is positive, then button OK should be pressed.

Or button NO if test failed.

4. When button OK has been pressed then programmer downloads finalcode.cfg configuration

file to programmer. Current configuration can activate serialization if required, reload final

code to be downloaded etc. When the new configuration is reloaded then final code is

downloaded to target device, serialization is created etc.

5. On the end programmer returns to beginning and waiting for the next target device to be

connected.

;===

; Script file - demo program - without DLL file

;---

>START

 VCCOFF

 MESSAGEBOX OKCANCEL

 "VCC if OFF now. Connect the test board."

 "When ready press the button:"

 " "

 "OK - to test the board"

 "CANCEL - to exit from program"

 IF BUTTONCANCEL GOTO finish

 LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\USB-MSP430Prg\test-A.cfg

 MESSAGEBOX OK

 "Press OK to download the test program."

 AUTOPROGRAM

 MESSAGEBOX YESNO

 "Press YES when the test finished successfully."

 "Press NO when the test failed."

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 89

 IF BUTTONNO GOTO START

 LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\USB-MSP430Prg\finalcode.cfg

 AUTOPROGRAM

 GOTO START

>finish

 END

;===

Script below allows to start programmer, download configuration file, open the code file and program

target device. When finished, then report (failed or pass) is saved into the file. File contents can be

serviced by the external program. The GUI popup messages are disabled.

;===

; Script file - demo program

; Program MCU and exit. Save report in the file

;---

 GUIMSGBOX DISABLE ;select Disable or Enable - remove or add comment ';'

 ; GUIMSGBOX ENABLE

 IFGUIMSGBOXPRESS CANCEL ;press CANCEL if GUI box is generated,

;but disabled to be displayed,

 ; ifGuiMsgBoxPress cancel ;This is OK also. Commands are not case

;sensitive

 LOADCFGFILE test-script.cfg ;recommended full path and name

 IF FAILED GOTO fileerror

 LOADCODEFILE test_1k.txt ;recommended full path and name

 IF FAILED GOTO fileerror

 AUTOPROGRAM

 IF DONE CALL testOK

 IF FAILED CALL testFailed

;extra message taken from report window added to file

;Can be saved on the same file or other file

 APPENDREPORT tmp_file.txt ;recommended full path and name

 GOTO finish

>testOK

 MESSAGE

 "1 Test OK" ;min 1 line, max 50 lines

 "2-nd line" ; -optional

 GOTO saveMsg

>testFailed

 MESSAGE

 "0 Test Failed" ;min 1 line, max 50 lines

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 90

 "2-nd line" ; -optional

 "etc " ; -optional

>saveMsg

 SAVEMSG tmp_file.txt ;recommended - full path and name

 RETURN

>fileerror

 MESSAGE

 "Config or Code file open error." ;min 1 line, max 50 lines

 "Program terminated."

 SAVEMSG tmp_file.txt ;recommended - full path and name

 ;end exit

>finish

 END

;==

Below is the next script file examples uses DLL file that allows to control testing process via function

written in the DLL. Functionality is the same as in the example above, but instead manually

confirmation of the test result the result is taken automatically from the DLL function. Two functions

has bee used for this purpouse

 FCONTROL - calls external user defined function in the DLL

 IF CONTROL = 0 GOTO START - test status from the FCONTROL and if result is 0 (FALSE) then

procedure returns to start.

Required DLL file should be created first.

;===

; Script file - demo program - with DLL file

;---

 OPENDLLFILE C:\Program Files\Elprotronic\FxControl-DLL\release\FxControl.dll

>START

 VCCOFF

 MESSAGEBOX OKCANCEL

 "VCC if OFF now. Connect the test board."

 "When ready press the button:"

 " "

 "OK - to test the board"

 "CANCEL - to exit from program"

 IF BUTTONCANCEL GOTO finish

 LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\USB-MSP430Prg\test-A.cfg

 MESSAGEBOX OK

 "Press OK to download the test program."

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 91

 AUTOPROGRAM

 FCONTROL 1 0 ;type 1, argument 0, but can be any

 IF CONTROL = 0 GOTO START ;when false (0), return to start

 IF BUTTONNO GOTO START

 LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\USB-MSP430Prg\finalcode.cfg

 AUTOPROGRAM

 GOTO START

>finish

 END

;===

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 92

13. Project and Configuration Load / Save

Programming software can save configuration settings in the configuration files or save the

whole project configuration with used code contents and save it in the encrypted project file . This

allows the user to create several configuration or project fils, one for a particular task, and thus

eliminates the need to manually change settings every time a different configuration is desired.

Furthermore, the config.ini file contains the most recently used settings and those settings will be used

as default whenever the software is started.

13.1 Load / Save Setup

To create a configuration file simply select Save Setup from the File menu. Current settings

will be saved for future use. To restore configuration settings select Load Setup from File menu and

select a file containing the settings you wish to restore.

In order to prevent accidental setup changes the MSP430 Programmer provides the option to

Lock configuration settings. When the user selects the Lock/Unlock Setup option from the Setup

menu, the MSP430 Flash Programmer will prevent the user from modifying the setup. The only

options that are available when the programmer is locked are Verify, Read, Autoprogram and Next.

Notice that the Next button will immediately change to implement the Autoprogram function. To

unlock the programmer the user must select the Lock/Unlock Setup option from the Setup menu.

13.2 Load / Save Project

The Project option (Save/Load) contains more then the programmer configuration only, but

can also the code and the BSL password used in the project. Contents of the project file is encrypted,

so it is not possible to read the contents of the used code downloaded to target device. When the

project is opened then the same decryption key must be used as it was used in the encryption process,

otherwise decryption will not succeed. Encryption key depends from the used type of software

(FlashPro430, GangPro430, etc.) used password or destination’s PC “hardware fingerprint” number.

So - the project file created with the GangPro430 software cannot be used with the FET-Pro430 or

FlashPro430 and vice-verse. Each project file should be create in the same type of software. Project

file is CRC protected and CRC check is performed when the file is loaded .

Project can be unprotected or protected with the destination PC “hardware fingerprint” number

or password protected. This allows to create the project that can be used only on the specific PC when

the project is encrypted with the destination PC “hardware fingerprint” number (useful in production)

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 93

or create the project that can be used only when the correct password is entered every time when the

project is open. Project can be unlocked or locked with almost all blocked buttons and pull down

menu items. When the project is locked, then only major buttons like Autoprogram or Verify are

active - and only a few pull-down menu items are accessible. All options that allows to read the code

contents are blocked.

When the new project is create then it is recommended to select the New Setup from pull

down menu and set the default option of all parameters and names used in the programmer. As the

next - the desired processor, code file, password file if required and all desired option (see all

available options described in this manual) should be selected. When it is done, it should be verified

if programmers works as expected. When all works, then the current setup can be saved as the project

file. Select the Save Project as.. from File pull down menu. Following dialogue will be displayed

(Figure 13.2-1) that allows to select desired project option

Figure 13.2-1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 94

Following options can be selected:

 Project protection:

Any PC - not protected.

When this option is selected then project is not protected and can be opened on any

PC without restrictions.

Any PC - Password protected.

When this option is selected then project can be opened when the password is correct.

The desired password should be entered in two edit lines. Password is case sensitive

and takes up to 16 characters - space including.

Selected PC - Hardware Fingerprint

When this option is selected then project can be opened only on one desired PC where

the PC’s “hardware fingerprint” number taken from the destination PC is the same

as the number used when the project has been created. This option is useful in

production because project can be opened automatically without password on the

desired PC. The same project file cannot work on other computers. When the project

is created for particular PC, then the PC “hardware fingerprint” number should be

taken from the desired PC and entered in the edit line in dialogue screen (figure 13.2-

1). This number has hardcoded format and contains eight hex characters with dash

between 4th and 5th character eg.

6FA4-E397

Notice, that the project created with the desired PC’s “hardware fingerprint” number

will not work on the PC where the project has been created, because “hardware

fingerprint” numbers on the destination PC and the PC used for creating a projet are

not the same. It is possible to create the project with the PC’s “hardware fingerprint”

number taken from his own PC, create a project and check if work as expected. When

all is OK, then project should be saved again with the desired PC’s “hardware

fingerprint” number.

PC’s “Hardware fingerprint” number used with the project can be read by selecting

the “PC Hardware fingerprint number” option from pull down menu

About/Help -> PC Hardware fingerprint number

Following message box is displayed when the option above is selected (figure 13.2-2)

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 95

 Locking option:

Locked Project

 1. When not selected, then project is not locked. All contents can be modified and all

buttons are accessible.

 2. When selected then project is locked. Almost all buttons are disabled (grayed) and

almost all items in the pull down menu are disabled.

When the project is locked, then it is possible to select - permanently lock project, or

select an option that it is possible to unlock the project under password. The unlock

password can be not the same as the password used for opening the project.

Locked Read options

When selected then the code viewers and READ button are blocked and not allows

to read the code contents downloaded to target device. If the security fuse is blown

after programming the target device, then code cannot be seen by the staff

downloading code to target devices.

Unlock with password

When project is locked then it is possible to select option “unlock with password” and

specify up to 16 characters unlocking password. Password is case sensitive.

On the figure 13.2-3 is a “Project Security Options” dialogue screen with selected

options

 Project protected with PC’s “hardware fringerprint” number, locked and

unlocked with password.

Figure 13.2-2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 96

By default, project is not protected and not locked. This allows to create unprotected project and open

it at any time on any PC without restrictions. All buttons and items on the dialogue screen are not

blocked.

13.3 Commands combined with the executable file

Programming executable file can be opened with project file having extension GP430prj eg.

 GangPro430.exe test.GP430prj

The Folder option in Windows can also be configured to open the programming executable file

(GangPro430.exe) when the file with extension GP430prj is selected. That allows to easy and fast

opening the Flash Programmer with configuration taken from the *.GP430prj file.

Project file or configuration setup file (or Code / Password file) can be opened using Load

Setup (Load Code / Password File) option from File menu or can also be opened using command

line combined with the executable file name. Following command line switches are available

 -prj Project file name (Open Project file)

 -sf Setup_file_name (Open Setup file)

Figure 13.2-3

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 97

 -cf Code_file_name (Open Code file)

 -pf Password_file_name (Open Password file)

 -nf SN_ file_name (Open Serial number list file)

 -rf Script_file_name (Run programming sequence from the Script File)

 -lock

Note: When the -cf option is used, then code file name saved in the setup file (configuration

file) is ignored and code file name specified with key -cf is used. Also when the -pf

option is used, then password file name saved in the setup file (configuration file) is

ignored and password file name specified with key -cf is used.

When the -prj option is used, then the -sf, -cf, -pf, -rf options are ignored.

Using Windows START button (left bottom) select Run.. Using Browse.. find and select executable

file (see Figure 13.3-1)

“C:\Program Files\Elprotronic\MSP430\USB GangPro430\GangPro430.exe"

and at the end enter the required key with name of the setup file eg.

“C:\Program Files\Elprotronic\MSP430\USB GangPro430\GangPro430.exe” -sf E:\ElproTronic\MFG\prg-04.cfg

To fully lock the configuration setup the extra key “-lock” can be added in the command line eg.

Figure13.3-1

Figure 13.3-2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 98

“C:\Program Files\Elprotronic\MSP430\USB GangPro430\GangPro430.exe” -lock -sf E:\ElproTronic\MFG\prg-04.cfg

or

“C:\Program Files\Elprotronic\MSP430\USB GangPro430\GangPro430.exe” -sf E:\ElproTronic\MFG\prg-04.cfg

Following configuration setup can be created using Shortcut options that allows to create a lot of

icons located on the desktop - each icon with required independent configuration setup. To do that

move the cursor to inactive desktop area, click right mouse button and select New (see Figure 13.3-3)

Using Browse.. in the Create Shortcut dialogue box select the following executable file

 “C:\Program Files\Elprotronic\USB FlashPro430\USB-MSP430-Prg.exe"

(see Figure 13.4) and at the and add the required command keys (see Figure 13.5) eg.

“C:\Program Files\Elprotronic\MSP430\USB GangPro430\GangPro430.exe" -lock -sf E:\ElproTronic\MFG\prg-04.cfg

Figure 13.3-3

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 99

Click button Next and follow instruction to create icon. Using Copy and Paste and modify required

configuration file names a lot of icons can be created with independent configuration setups. Clicking

on the selected icon GangPro430 programming software will start with the selected configuration

setup, and locked if required.

Figure 13.3-4

Figure 13.3-5

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 100

14. Target connection

The GangPro430 Flash Programmers with the JTAG/SBW/BSL Interface use the

STANDARD 14-pin TI-JTAG connector’s pinout to facilitate the JTAG/SBW communication

with one target device. Unused pins in the standard TI’s JTAG/SBW connectors has been used to

facilitate the GANG JTAG/SBW/BSL connections allows to connect up to six target devices.

Texas Instruments created the standard for the MSP430 JTAG/SBW interface connector.

Pin 1 - TDO/TDI Pin 2. - Vcc

Pin 3 - TDI / Vpp/TDI Pin 4. - Vcc Ext

Pin 5 - TMS Pin 6. -

Pin 7 - TCK Pin 8. - TEST

pin 9 - GND Pin 10. -

pin 11 - RST Pin 12. -

pin 13 - Pin 14 -

Pins 6,10,12,13 and 14 are unused or spare. To facilitate GANG communication these unused pins

has been used to connect the JTAG TDO/TDI (or BSL-Tx) to/from others target devices. All others

lines are connected in parallel to all target devices. Combined connector is shown on figure 14.1

This modification DOES NOT affect the JTAG adapter communication when the only one

target device with the standard JTAG connector is connected. In this case our standard FlashPro430

Figure 14.1

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 101

software can be used with the GangPro430 programming adapter to facilitate JTAG communication

with the target device. The FlashPro430 software will set all extra TDO/TDI lines in the TS state

(lines TDO/TDI-2, TDO/TDI-3, TDO/TDI-4, TDO/TDI-5, and TDO/TDI-6).

Figure14-2 show interconnection between modified JTAG connector and six target devices.

Note, that TEST line is used only with the small MSP430Fxx microcontrollers packed within 28 and

less pins package.

Pin # Name Description

1 (Red) TDO/TDI Data output / Input - 1

2 VCC-In / Sense Vcc supplied to the target (2.2 to 3.6V/ max 100 mA) and the target’s Vcc voltage sense.

This pis should be connected to Vcc of the microcontroller if microcontroller is supplied from the

Flash Programming Adapter. If the Target’s Device microcontroller is energized from his own battery

or external power supply then the pin 2 or 4 (Vcc sense) should be connected to the Vcc of the

microcontroller.

3 TDI-Vpp Data Input - Blow Fuse voltage Vpp (+6.5V)

4 Sense Target’s Device Vcc Sense

5 TMS-In TMS Input

6 TDO/TDI-2 (*) Data output / Input - 2.

7 TCK-In TCK Input pin

8 TEST-Vpp TEST Input pin, Blow Fuse voltage Vpp (+6.5V) Used only with the MSP430Fxx with the small

package - 28 pins and below

9 GND Ground

10 TDO/TDI-3 (*) Data output / Input - 3.

11 \RST Microcontroller Reset Input pin.

12 TDO/TDI-4 (*) Data output / Input - 4.

13 TDO/TDI-6 (*) Data output / Input - 6.

14 TDO/TDI-5 (*) Data output / Input - 5.

Table 14.1 Gang JTAG Interface connector

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 102

Table 14.2 shows the Spy-Bi-Wire interface connector descriptions.

Figure14-3 show interconnection between JTAG / Spy-Bi-Wire connector and six target

devices. All TDIO’s signals are connected to target’s devices TEST/SBWTDIO pins via resistor 330

ohms, and the TEST pin is connected directly to the same target’s device pins TEST/SBWTDIO.

When blow the JTAG security fuse is not required, then the TEST line can be disconnected from

target devices. Only the SBWTDIO lines from the 14-pins connector can be connected to

TEST/SBWTDIO target’s pins.

Pin # Name Description

1 (Red) SBWTDIO-1 Data output / Input - 1

2 VCC-In / Sense Vcc supplied to the target (2.2 to 3.6V/ max 100 mA) and the target’s Vcc voltage sense.

This pis should be connected to Vcc of the microcontroller if microcontroller is supplied from the

Flash Programming Adapter. If the Target’s Device microcontroller is energized from his own battery

or external power supply then the pin 2 or 4 (Vcc sense) should be connected to the Vcc of the

microcontroller.

3 not used

4 Sense Target’s Device Vcc Sense

5 not used

6 SBWTDIO--2 (*) Data output / Input - 2.

7 SBWTCK TCK Input pin

8 TEST-Vpp TEST Input pin, Blow Fuse voltage Vpp (+6.5V)

9 GND Ground

10 SBWTDIO-3 (*) Data output / Input - 3.

11 not used

12 SBWTDIO-4 (*) Data output / Input - 4.

13 SBWTDIO-6 (*) Data output / Input - 6.

14 SBWTDIO-5 (*) Data output / Input - 5.

Table 14.2 Gang Spy-Bi-Wire Interface connector

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 103

Figure 14.2

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 104

Figure 14.3

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 105

Table 14.3 shows the BSL interface connector descriptions.

 Figure14-4 shows interconnection between modified JTAG/BSL connector and six target

devices with the Boot Strap Loader (BSL) communication. Note, that TEST line is used only with

the small MSP430Fxx microcontrollers packed within 28 and less pins package.

Figure14-5 shows detailed schematic of the 14-pins JTAG/BSL Input/Output connection

inside the GangPro430 Flash Programming Adapter.

Figure14-6 shows detailed schematic of the Gang Splitter (sold separately).

Figure14-7 shows picture of the Gang Splitter.

Pin # Name Description

1 (Red) BSL-Tx-1 Data output from target device -1

2 VCC-In / Sense Vcc supplied to the target (2.2 to 3.6V/ max 100 mA) and the target’s Vcc voltage sense.

This pis should be connected to Vcc of the microcontroller if microcontroller is supplied from the

Flash Programming Adapter. If the Target’s Device microcontroller is energized from his own battery

or external power supply then the pin 2 or 4 (Vcc sense) should be connected to the Vcc of the

microcontroller.

3 BSL-Rx Data Input to all target devices

4 Sense Target’s Device Vcc Sense

5 not used

6 BSL-Tx-2 Data output from target device -2

7 TCK TCK Input to target devices pin

8 TEST TEST Input pin Used only with the MSP430Fxx with the small package - 28 pins and below

9 GND Ground

10 BSL-Tx-3 Data output from target device -3

11 \RST Microcontroller Reset Input pin.

12 BSL-Tx-4 Data output from target device -4

13 BSL-Tx-6 Data output from target device -6

14 BSL-Tx-5 Data output from target device -5

Table 14.3 Gang BSL Interface connector

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 106

Figure 14.4

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 107

Figure 14.5

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 108

Figure 14.6

Figure 14.7

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 109

Appendix A - specification

Specification:

PC Communication Interface: - Full Speed USB-1.1 (12Mbits/s)

USB connector - Adpater site: USB-type B, Computer site: USB-type A

Target connector - 14 pins header connector - standard JTAG/SBW pinhead with added

five TDO/TDI and six BSL connections to unused pins.

Number of programmed target devices - up to 6 programmed simultaneously via JTAG or BSL interface

DC Power - from USB Interface - 5V +/- 20%, 70mA + target’s current (0-200mA) (USB-FPA 6.x)

Target Device DC supply

- external - 1.8 V to 3.6 V

- from programming adapter - 1.8 V to 3.6 V in step 0.1V / 200 mA max. (USB-FPA 6.x)

Communication speed via JTAG Interface - selectable 1Mb/s and 400kb/s

Communication speed via BSL Interface - selectable 9.6kb/s and 150 kb/s

Size: - 76 x 43 x 20 mm (3.0 x 1.68 x 0.8 inch)

Verification Compliance: - CE (European CISPR 22 and EN 55022).

- FCC Part 15, Subpart B- Class B Unintentional Radiators for Uses in

Home, Commercial and Industrial Areas.

Flash Programming specification - JTAG 1 Mb/s 400 kb/s

** Block Words Write (64 bytes) **

 1. MCLK clock frequency - 1.2 MHz 750 kHz

 (From FPA to MSP430 via TDI pin)

 2. Flash Timing Gen. Frequency (f FTG) - 400 kHz 375 kHz

 3. Cumulative Programming Time (t CPT)

MSP430F1xx, F4xx - 2.14 ms 2.48 ms

MSP430F2xx, MSP430X - 1.87 ms 2.16 ms

** Single Word Write **

 1. Flash Timing Gen. Frequency (f FTG) - 428.6 kHz 428.6 kHz

 2. Cumulative Programming Time (t CPT) (32 words)

MSP430F1xx, F4xx - 2.62 ms 2.62 ms

MSP430F2xx, MSP430X - 2.40 ms 2.40 ms

Flash Erasing specification - JTAG - any speed

 Flash Timing Gen. Frequency (f FTG) - 428.6 kHz

 Mass or Main Memory Erase Time

MSP430F1xx, F4xx - 248 ms

MSP430F2xx, MSP430X - 24.8 ms

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 110

Programming / reading times for a target microcontroller with 32 kB of Flash Memory

Note: * - add 0.2 second, if blow the Security Fuse is enabled.

 Auto Program performs:

Target DC voltage verification,

Communication initialization,

Fuse checking or password verification,

Memory erase (all memory, or specified sectors memory),

Blank checking,

Flash programming and fast verification

Serial Number and Model writing (if selected),

Check sum verification,

 GangPro430 - USB-MSP430 Flash Gang Programmer PM015A01 Rev.16 111

