

FCC TCB & IC CB

0685

Approved Tost Fieldity 46390-2049

SL2-IN-E-1119R

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com Email: vic@ultratech-labs.com November 9, 2015

ELPROTRONIC INC.

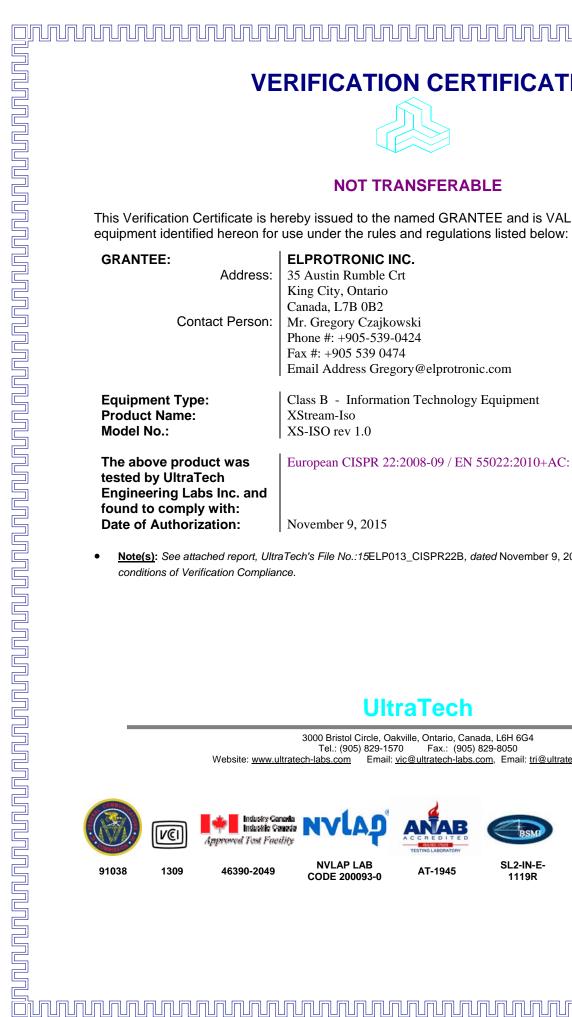
35 Austin Rumble Crt, King City, ON Canada, L7B 0B2

Attn.: Mr. Gregory Czajkowski

Subject:Verification Testing under CISPR 22:2008-09 / EN 55022:2010+AC: 2011, Class B - Information Technology Equipment.

Product:	XStream-Iso
Model No.:	XS-ISO rev 1.0

Dear Mr. Czajkowski,


The product sample, as provided by you, has been tested and found to comply with CISPR 22:2008-09 / EN 55022:2010+ AC: 2011, Class B - Information Technology Equipment.

Enclosed you will find a copy of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu BASc. V.P., Engineering

Encl

VERIFICATION CERTIFICATE

ותנתנתנתנתנתנתנתנתנתנתנתנת

NOT TRANSFERABLE

This Verification Certificate is hereby issued to the named GRANTEE and is VALID ONLY for the equipment identified hereon for use under the rules and regulations listed below:

GRANTEE:	ELPROTRONIC INC.
Address:	35 Austin Rumble Crt
	King City, Ontario
	Canada, L7B 0B2
Contact Person:	Mr. Gregory Czajkowski
	Phone #: +905-539-0424
	Fax #: +905 539 0474
	Email Address Gregory@elprotronic.com
Equipment Type: Product Name: Model No.:	Class B - Information Technology Equipment XStream-Iso XS-ISO rev 1.0
The above product was tested by UltraTech Engineering Labs Inc. and found to comply with:	European CISPR 22:2008-09 / EN 55022:2010+AC: 2011
Date of Authorization:	November 9, 2015

Note(s): See attached report, UltraTech's File No.:15ELP013_CISPR22B, dated November 9, 2015 for details and conditions of Verification Compliance.

Approved by: Tri M. Luu, BASc. V.P. - Engineering

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com Website: www.ultratech-labs.com

XStream-Iso Model No.: XS-ISO rev 1.0

Applicant: **ELPROTRONIC INC.**

 \mathcal{M}

35 Austin Rumble Crt King City, Ontario Canada, L7B 0B2

Tested in Accordance With

INTERNATIONAL ELECTROTECHNICAL COMMISSION (International Special Committee on Radio Interference) CISPR 22:2008-09 / EN 55022:2010+AC:2011, CLASS B Information Technology Equipment - Radio Disturbance Characteristics

UltraTech's File No.: 15ELP013_CISPR22B

This Test report is Issued under the Authority of Tri M. Luu BASc. Vice President of Engineering UltraTech Group of Labs

Date: November 9, 2015

Report Prepared by: Phuong Ho

Issued Date: November 9, 2015

Test Date: October 30, 2015

Tested by: Mr. Hien Luu & Mr. Quan Ngo, EMI/EMC Technicians

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
 This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

TABLE OF CONTENTS

EXHIBI	Γ 1. INTRODUCTION	3
1.1.	SCOPE	3
1.2.	REVISION HISTORY	3
1.3.	RELATED SUBMITTAL(S)/GRANT(S)	
1.4.	NORMATIVE REFERENCES	4
EXHIBI	Γ 2. PERFORMANCE ASSESSMENT	5
2.1.	CLIENT INFORMATION	
2.2.	EQUIPMENT UNDER TEST (EUT) INFORMATION	5
2.3.	FUNCTION /APPLICATION OF THE EUT	
2.4.	LIST OF COMPONENTS/PARTS OF THE EUT	
2.5.	LIST OF EUT'S PORTS	
2.6.	ANCILLARY EQUIPMENT	6
EXHIBI	F 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	7
3.1.	CLIMATE TEST CONDITIONS	
3.2.	OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	7
3.3. Measu	BLOCK DIAGRAM OF TEST SETUP FOR AC POWERLINE CONDUCTED EMISSION & RADIATED EMISSION REMENTS	7
3.4.	PHOTOGRAPHS OF TEST SETUP FOR AC CONDUCTED EMISSION MEASUREMENTS	
3.5.	PHOTOGRAPHS OF TEST SETUP FOR RADIATED EMISSION MEASUREMENTS	
EXHIBI	Γ 4. SUMMARY OF TEST RESULTS	13
4.1.	LOCATION OF TESTS	13
4.2.	APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	
4.3.	MODIFICATIONS REQUIRED FOR COMPLIANCE	13
4.4.	DEVIATION OF THE STANDARD TEST PROCEDURES	13
EXHIBI	Γ 5. MEASUREMENT DATA	14
5.1.	AC MAINS TERMINAL DISTURBANCE VOLTAGE IN FREQUENCY BAND 150 KHz to 30 MHz @ CISPR	
	8-09 / EN55022:2010+AC: 2011 [5.1, TABLE 2]	
5.1.1		
5.1.2 5.1.3	· · · · · · · · · · · · · · · · · · ·	
5.1.4		
	ELECTROMAGNETIC RADIATION DISTURBANCE FROM 30 TO 6000 MHz @ CISPR 22:2008-09 /	15
	22:2010+AC: 2011[6, TABLES 6 & 9]	17
	Limits	
5.2.2	P. Method of Measurements	17
5.2.3		
5.2.4	t. Test Results	18
EXHIBI LEVEL)	Γ 6. TEST INSTRUMENTS & MEASUREMENT UNCERTAINTY (K=2, 95% CONFIDENCE 19	
6.1.	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY (0.15-30 MHz)	10
6.2.	RADIATED EMISSION MEASUREMENT UNCERTAINTY (0.13-30 MHZ)	
EXHIBI		
L'AHIDI		41

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	CISPR 22:2008-09 / EN55022:2010+AC: 2011	
Title	Information Technology Equipment - Radio Disturbance Characteristics - Limits and	
	Methods of Measurement	
Purpose of Test:	To gain Verification Compliance with CISPR 22:2008-09 / EN55022:2010+AC: 2011 -	
-	Class B.	
Test Procedures	Both conducted and Electromagnetic Radiation Disturbance measurements were	
	conducted in accordance with the European Standards CISPR 22:2008-09 /	
	EN55022:2010+AC: 2011 - Information Technology Equipment - Radio Disturbance	
	Characteristics - Limits and Methods of Measurement.	
Class B Classification:	Class B ITE is a category of apparatus which satisfies the Class B ITE disturbance limits.	
	 Class B is intended primarily for use in domestic environment; the environment where the use of broadcast radio and television receivers may be expected within a distance of 10m of the apparatus concerned, and may include: Equipment with no fixed place of use; for example portable equipment powered by built-in batteries. Telecommunication terminal equipment powered by a telecommunication network. Personal computers and auxiliary connected equipment. 	

The CISPR standard defines the acceptable levels of Conducted Disturbance at Mains Ports and Radiated Disturbance emanated from electronic products. Countries are known to require CISPR compliance are *Australia, Austria, Belgium, Ireland, France, Italy, Spain, Germany, Netherlands, Portugal, Denmark, Luxembourg, Switzerland, Finland, Norway, Sweden, Iceland, Greenland, New Zealand, Japan, United Kingdom, The United States, Canada and etc*

1.2. REVISION HISTORY

Document	Issue Date	Description
15ELP013_CISPR22B	Nov. 9, 2015	Original Document

1.3. RELATED SUBMITTAL(S)/GRANT(S)

None

1.4. NORMATIVE REFERENCES

Publication	Year	Title	
CISPR 22	2008-09,	Information Technology Equipment - Radio Disturbance Characteristics -	
	Edition 6.0	Limits and Methods of Measurement	
EN 55022	2010		
+AC	2011		
CISPR 16-1-1	2006	Specification for radio disturbance and immunity measuring apparatus and	
+A1	2006	methods.	
+A2	2007	Part 1-1: Measuring Apparatus	
CISPR 16-1-2	2003	Specification for radio disturbance and immunity measuring apparatus and	
+A1: 2004		methods.	
+A2: 2006		Part 1-2: Conducted disturbances	
ANSI C63.4	2009	American National Standard for Methods of Measurement of Radio-Noise	
		Emissions from Low-Voltage Electrical and Electronic Equipment in the Range	
		of 9 KHz to 40 GHz	

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT:		
Name:	ELPROTRONIC INC.	
Address:	35 Austin Rumble Crt, King City, ON, L7B0B2, Canada	
Contact Person:	Gregory Czajkowski	
Email Address:	Gregory@elprotronic.com	
Telephone No.:	+905-539-0424	
Fax No.:	+905 539 0474	

MANUFACTURER:	
Name:	ELPROTRONIC INC.
Address:	35 Austin Rumble Crt, King City, ON, L7B0B2, Canada
Contact Person:	Gregory Czajkowski
Email Address:	Gregory@elprotronic.com
Telephone No.:	+905-539-0424
Fax No.:	+905 539 0474

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Elprotronic Inc.
Product Name:	XStream-Iso
Model Name or Number:	XS-ISO rev 1.0
Firmware Version Identification Number :	Rev 1.0
Serial Number:	20150002
Oscillator Frequencies:	12 MHz
CPU Frequencies:	120 MHz
Power input ratings:	120/230 VAC, 60/50 Hz
Equipment Environment / Type:	Information Technology Equipment

2.3. FUNCTION /APPLICATION OF THE EUT

2.4. LIST OF COMPONENTS/PARTS OF THE EUT

	Name, Make, Model of Component / Part	Short Description of Use	
1	XSream-ISO adapter	-	
2	USB cable	-	
3	JTAG ribbon cable	-	

2.5. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Port Type	Cable Type (Shielded/Non-shielded)
1	Power port	1	3 prong	Non-shielded
2	Ribbon port	1	Ribbon	Non-shielded
3	USB port	1	USB	Shielded

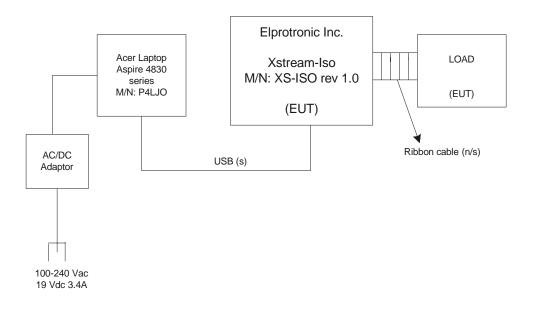
2.6. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1	
Equipment Make and Name:	Acer Laptop Aspire 4830 series
Model Name or Number:	P4LJO
Cable Length & Type:	Shielded
Connected to EUT's Port:	USB

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS


The climate conditions of the test environment are as follows:

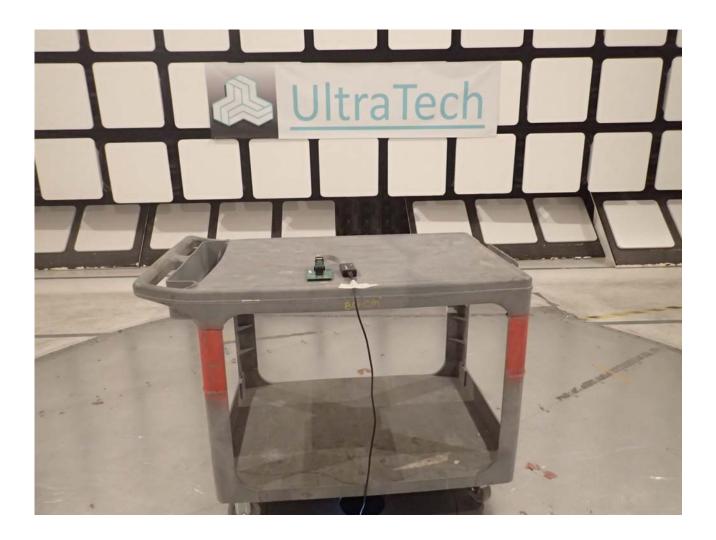
Temperature:	23°C
Humidity:	35%
Pressure:	100 kPa
Power input source:	230 Vac

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Connect XStream-Iso adapter to USB port in PC. Connect 14-wires ribbon cable between XStream-Iso and target device (any example that can be supplied by XStream-Iso). Run application software from PC - FlashPro-ARM and rub the test - e.g. verify - in loop.

3.3. BLOCK DIAGRAM OF TEST SETUP FOR AC POWERLINE CONDUCTED EMISSION & RADIATED EMISSION MEASUREMENTS

3.4. PHOTOGRAPHS OF TEST SETUP FOR AC CONDUCTED EMISSION MEASUREMENTS



 ULTRATECH GROUP OF LABS
 File #: 15ELP013_CISPR22B

 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 November 9, 2015

 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com,
 Website: http://www.ultratech-labs.com

3.5. PHOTOGRAPHS OF TEST SETUP FOR RADIATED EMISSION MEASUREMENTS

Model No.: XS-ISO rev 1.0

 ULTRATECH GROUP OF LABS
 File #: 15ELP013_CISPR22B

 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 November 9, 2015

 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Model No.: XS-ISO rev 1.0

 ULTRATECH GROUP OF LABS
 File #: 15ELP013_CISPR22B

 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 November 9, 2015

 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com,
 Website: http://www.ultratech-labs.com

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power line Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site has been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2017-04-02.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

CISPR 22 EN 55022	TEST REQUIREMENTS	MARGIN BELOW (-) / ABOVE (+) THE LIMITS	COMPLIANCE (YES/NO)
5.1, Table 2, Class B	AC Mains Terminal Disturbance Voltage in the frequency band 150 KHz to 30 MHz	- 18.4 dB @ 1.995 MHz	Yes
5.2, Table 4, Class B	Conducted Common Mode (Asymmetric Mode) Disturbance at Telecommunication Ports in the frequency band 150 KHz to 30 MHz	-	N/A
6, Table 6, Class B	Electromagnetic Radiation Disturbance in the frequency band 30 to 2000 MHz	- 4.4 dB @ 33.90 MHz & 155.91 MHz	Yes

4.3. MODIFICATIONS REQUIRED FOR COMPLIANCE

None

4.4. DEVIATION OF THE STANDARD TEST PROCEDURES

None

EXHIBIT 5. MEASUREMENT DATA

5.1. AC MAINS TERMINAL DISTURBANCE VOLTAGE IN FREQUENCY BAND 150 KHZ TO 30 MHZ @ CISPR 22:2008-09 / EN55022:2010+AC: 2011 [5.1, TABLE 2]

5.1.1. Limits

The equipment shall meet the limits of the following table:

) / EN55022:2010+AC: 2011 5 B LIMITS	
Test Frequency Range (MHz)	Quasi-Peak (dBµV)	Average* (dBµV)	Measuring Bandwidth
0.15 to 0.5	66 to 56*	56 to 46*	RBW = 9 KHz $VBW \ge 9 \text{ KHz for } QP$ VBW = 1 Hz for Average
0.5 to 5	56	46	RBW = 9 KHz $VBW \ge 9 \text{ KHz for } QP$ VBW = 1 Hz for Average
5 to 30	60	50	RBW = 9 KHz $VBW \ge 9 \text{ KHz for } QP$ VBW = 1 Hz for Average

• Decreasing linearly with logarithm of frequency

5.1.2. Method of Measurements

Refer to Test Procedures ULTR P001-2004, CISPR 22 / EN 55022, ANSI C63.4

Calculation of Conducted Emission Voltage (dBµV):

This is calculated by adding the L.I.S.N factor, Cable loss factor, and Attenuator factor to the measured reading. The basic equation with a sample calculation is as follows:

Voltage ($dB\mu V$) = RA + AF + CF + LF

Where

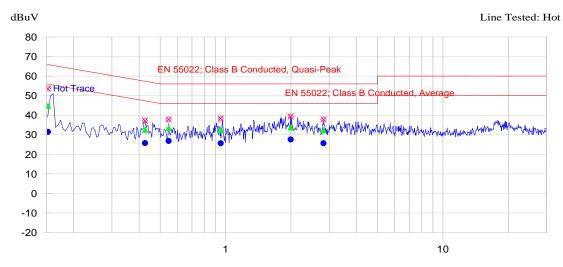
RA	=	Receiver/Analyzer Reading in dBµV
AF	=	Attenuation Factor in dB
CF	=	Cable loss Factor in dB
LF	=	L.I.S.N Factor in dB

5.1.3. Test Instruments

Please refer to Exhibit 6 for Test Instruments and Measurement Uncertainty

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4


File #: 15ELP013_CISPR22B November 9, 2015

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

5.1.4. Test Results

The emissions were scanned from 150 KHz to 30 MHz at AC mains Terminal via a LISN, and all emissions less than 20 dB below the limits were recorded.

Description: Supply Voltage:230Vac Setup Name:EN55022 Class B Customer Name: ELPROTRONIC INC Project Number: ELP-013Q Operator Name: QUAN NGO EUT Name: XStream-Iso Adapter Date Created: 10/23/2015 2:52:13 AM Date Modified: 10/23/2015 3:10:17 AM

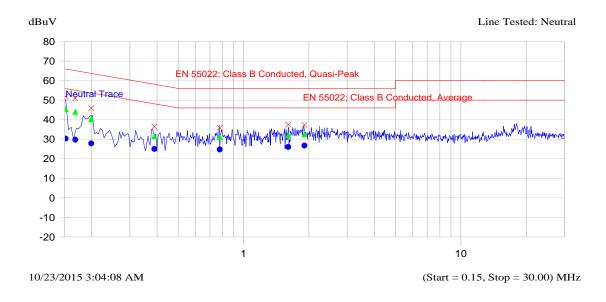
Plot #1

10/23/2015 3:12:00 AM

(Start = 0.15, Stop = 30.00) MHz

File #: 15ELP013_CISPR22B

November 9, 2015


Frequency MHz	Peak dBuV		Delta QP-QP Limit dB	Avg dBu∨	Delta Avg-Avg Limit ' dB	Trace Name
0.152 0.426 0.548 0.950 1.995 2.820	53.5 37.2 37.7 38.3 39.4 37.8	32.5 33.4	-21.2 -25.5 -22.6 -23.5 -22.3 -23.6	25.7	-19.2 -20.4 -18.4	Hot Trace Hot Trace Hot Trace Hot Trace Hot Trace Hot Trace

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Description: Supply Voltage:230Vac Setup Name: EN55022 Class B Customer Name: ELPROTRONIC INC Project Number: ELP-013Q Operator Name: QUAN NGO EUT Name: XStream-Iso Adapter Date Created: 10/23/2015 2:52:13 AM Date Modified: 10/23/2015 3:00:28 AM

Plot #2

Frequency	Peak	QP	Delta QP-QP Limit	Avg	Delta Avg-Avg Limit	Trace Name
MHz	dBuV	dBuV	dB	dBuV	' dB	
0.152 0.168 0.199 0.389 0.776 1.607 1.905	51.1 45.9 36.5 35.8 37.5	45.4 44.0 40.4 31.5 31.1 32.0 32.7	-20.5 -21.4 -24.2 -27.6 -24.9 -24.0 -23.3	30.3 29.7 27.9 25.1 24.7 26.0 26.8	-25.6 -25.7 -26.7 -24.1 -21.3 -20.0 -19.2	Neutral Trace Neutral Trace Neutral Trace Neutral Trace Neutral Trace Neutral Trace Neutral Trace

ULTRATECH GROUP OF LABS Fi 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

File #: 15ELP013_CISPR22B November 9, 2015

5.2. ELECTROMAGNETIC RADIATION DISTURBANCE FROM 30 TO 6000 MHZ @ CISPR 22:2008-09 / EN55022:2010+AC: 2011[6, TABLES 6 & 9]

5.2.1. Limits

Test Frequency Range (MHz)	Class B Limits (dBµV/m)	EMI Detector Used	Measuring Bandwidth (KHz)	Measurement Distance (meters)
30 - 230	30.0	Quasi-Peak	RBW = 120 KHz,	10
200 200	2010	Zumor r um	VBW > 120 KHz	10
230 - 1000	37.0	Quasi-Peak	RBW = 120 KHz,	10
			VBW <u>></u> 120 KHz	
1000 - 3000	70.0	Peak	RBW = 1 MHz,	3
	50.0	Average	$VBW \ge 1 MHz$	
3000 - 6000	74.0	Peak	RBW = 1 MHz,	3
	54.0	Average	$VBW \ge 1 MHz$	

5.2.2. Method of Measurements

Refer to Exhibit 7 of this report, CISPR 22:2008-09 / EN55022:2010+AC: 2011, CISPR 16-1-1 and ANSI C63.4 The EUT shall be scanned from 30 to 6000 MHz.

Calculation of Field Strength:

The field strength is calculated by adding the calibrated antenna factor and cable factor, and subtracting the Amplifier gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS	=	Field Strength
RA	=	Receiver/Analyzer Reading
AF	=	Antenna Factor
CF	=	Cable Attenuation Factor
AG	=	Amplifier Gain

5.2.3. Test Instruments

Please refer to Exhibit 6 for Test Instruments and Measurement Uncertainty

5.2.4. Test Results

The emissions were scanned from 30 to 1000 MHz at 10 Meters distance and all emissions less than 20 dB below the limits were recorded.							
RF DETECTOR ANTENNA FREQUENCY LEVEL USED PLANE LIMIT MARGIN PASS/							
(MHz)	(dBuV/m)	/m) (PEAK/QP) (H/V) (dBuV/m) (dB) FAIL					
33.90	25.60	QP	V	30.0	-4.4	PASS	
84.05	23.68	QP	V	30.0	-6.3	PASS	
155.91	25.65	PEAK	V	30.0	-4.4	PASS	

No significant Radiated Emissions was found in the frequency range from 1 to 2 GHz at 3 Meters distance.

EXHIBIT 6. TEST INSTRUMENTS & MEASUREMENT UNCERTAINTY (K=2, 95% CONFIDENCE LEVEL)

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY (0.15-30 MHZ)

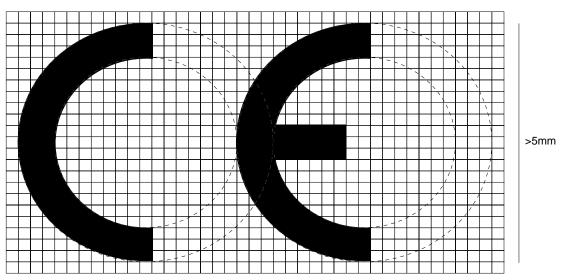
Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Calibration Due Date		
Spectrum Analyzer	HP	E7401A	US40240432	9 kHz–26.5 GHz	Apr. 9, 2017		
Attenuator	Pasternack	PE7010-20	-	DC-2 GHz	Feb. 3, 2017		
LISN Used	EMCO	3825/2	8907-1531	10 kHz-100 MHz	Sep. 29, 2016		
Test Software: Agilen	Test Software: Agilent (HP) designed E7415A EMI Test Measurement Software version A.01.40 is used for automated						

Test Date: October 30, 2015

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 1.44	<u>+</u> 1.8
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 2.89	<u>+</u> 3.6

6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Due Date
EMI Receiver	Rohde &	ESU40	100037	20 Hz to 40 GHz	May 8, 2017
	Schawrz				-
Pre Amplifier	Com-Power	PAM-0118	551016	500 MHz to 18 GHz	Jan. 6, 2016
Biconilog Antenna	EMCO	3142C	00026873	26 – 3000 MHz	April 14, 2016
Horn Antenna	EMCO	3115	9911-5955	1GHz – 18 GHz	Mar. 26, 2016
Semi-Anechoic	TDK	FCC: 91038			April 2, 2017
Chamber		IC: 2049A-3			-


Test Date: October 30, 2015

	Radiated Emission Measurement Uncertainty @ 10m, Horizontal (30-1000 MHz):	Measured (dB)	Limit (dB)
Uc	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\substack{m \sum u_i^2(y)}}$	<u>+</u> 2.32	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.65	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 10m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 2.32	<u>+</u> 2.6
U	Expanded uncertainty U: $U = 2u_c(y)$	<u>+</u> 4.64	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration

EXHIBIT 7. LABELLING REQUIREMENTS

The CE Mark with respect to the EMC Directive 2014/30/EU

The CE mark shall consist of the initials "CE" taking the following form

- If the CE marking is reduced or enlarged, the proportions given in the above graduated drawing must be respected.
- Where apparatus is the subject of other Directives covering other aspects and which also provide for the CE conformity marking, the latter shall indicate that the appliances are also presumed to conform to those other Directives.
- However, where one or more of these Directives allow the manufacturer, during a transitional period, to choose which arrangements to apply, the CE mark shall indicate conformity only to the Directives applied by the manufacturer. In this case, particulars of the Directive applied, as published in the Official Journal of the European Communities, must be given in the documents, notices or instructions required by the Directives and accompanying such apparatus.

The various components of the CE marking must have substantially the same vertical dimension, which may not be less than 5mm.